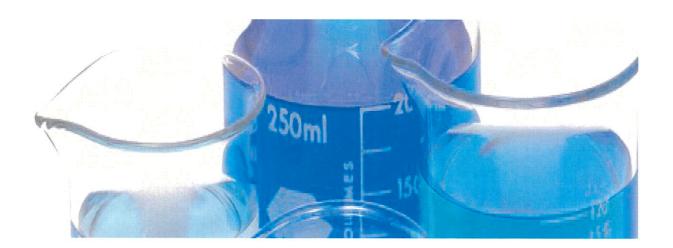
ATTACHMENT 2:

Results of the Site Specific Streamlined Water Effects Ratio for Copper Intended for

Town of Danville Wastewater Treatment Plant 1000 East Broadway Danville, Indiana

Document type

Report


Date

May 2018

Prepared for

Indiana Department of Environmental Management Indianapolis, Indiana

RESULTS OF SITE-SPECIFIC STREAMLINED WATER EFFECT RATIO FOR COPPER

RESULTS OF SITE-SPECIFIC STREAMLINED WATER EFFECT RATIO FOR COPPER

CONTENTS

1.	EXECUTIVE SUMMARY	1
2.	INTRODUCTION AND STUDY OBJECTIVE	1
3.	GENERAL STUDY DESIGN	2
3.1	SAMPLE COLLECTION	2
3.2	TOXICITY TESTING	3
3.3	TEST WATERS	4
3.4	ANALYTICAL ANALYSIS	5
4.	CALCULATIONS, RESULTS, AND DISCUSSION	6
4.1	LC50 AND WER CALCULATIONS	6
4.2	RESULTS AND DISCUSSION	6
4.2.1	Water Quality and Test Acceptability	6
4.2.2	Copper Toxicity to <i>C. dubia</i>	7
4.2.3	Final WER (fWER)	8
5.	CONCLUSIONS	8
6.	REFERENCES	9

LIST OF TABLES (WITHIN THE REPORT)

TABLE 1.	Summary of Overlapping Outfall 001 Data
TABLE 2.	Overview of Streamlined WER Determination
TABLE 3.	Nominal Copper Concentrations
TABLE 4.	WER Determination Chemical Analysis Timeline

LIST OF TABLES (ATTACHED)

TABLE 5. Measured Analytical Data in Site and Laboratory Test Waters

TABLE 6. Nominal and Measured Copper Concentrations with Percent Mortality

TABLE 7-A. Ceriodaphnia dubia LC50 and Species Mean Acute Values (SMAVs)

Standardized to 275 mg/L (as CaCO3) Hardness

TABLE 7-B. Calculated WERs for Total Copper

APPENDIX

Bench Sheets and Analytical Data Control Charts

Ramboll 201 Summit View Drive Suite 300 Brentwood, TN 37027 USA

T +1 615 277 7570 F +1 615 377 4976

www.ramboll.com

1. EXECUTIVE SUMMARY

The Town of Danville executed the August 2017 Study Plan for a Site-Specific Streamlined Water Effect Ratio for Copper which was developed in accordance with the Streamlined Water-Effect Ratio Procedure for Discharges of Copper (USEPA, 2001). Following an initial range-finder event, two rounds of sampling for WER assessment were performed using 100% Outfall 001 effluent. A final site-specific WER of 4.7 was determined for total copper. The site-specific WER of 4.7 will be used as the basis of a request for a site-specific modification to both the chronic and acute aquatic life criteria for copper and associated Town of Danville NPDES Permit limits for total copper.

2. INTRODUCTION AND STUDY OBJECTIVE

The Town of Danville owns and operates the Town of Danville Wastewater Treatment Plant (WWTP) which is a major municipal wastewater treatment plant in Danville, Indiana. Outfall 001 is authorized to discharge to West Fork White Lick Creek via NPDES Permit IN0020079. The Permit was renewed with an effective date of February 1, 2017. In developing the discharge limits for the renewed NPDES Permit, IDEM found that the WWTP effluent levels of total copper had a reasonable potential to exceed (RPE) the in-stream aquatic life criteria. Hence, the renewed Permit contains final water quality-based effluent limits (WQBELs) for total copper with a 3-year compliance schedule. Upon review of the IDEM approach to developing the WQBELs, options to adjust the criteria or the implementation of the criteria to incorporate site-specific (WWTP and West Fork White Lick Creek) conditions were identified.

The USEPA water-effect ratio (WER) procedure was initially published in 1984 and revised in 1994. The WER Interim Guidance (USEPA, 1994) outlines a methodology by which laboratory toxicity tests in site water and laboratory water are conducted with a primary and secondary test species. In 2001, the Streamlined WER procedure for copper was published. The Streamlined WER procedure for copper was developed in response to the need to improve the efficiency of applying the WER approach for the common situation where copper concentrations exceed criteria due to continuous discharges but there is no actual toxicity due to the elevated copper concentrations¹. "The most common such situation involves municipal effluents, which past experience and current knowledge have generally shown to yield low risks for copper toxicity, due to the sequestering of copper by organic matter" (USEPA 2001). USEPA 2001 goes on to say that "Because this is a relatively common regulatory situation, a great deal of experience is available to guide the development of a more efficient procedure," and "EPA developed a more streamlined approach, simpler to perform, simpler to review, but fully protective" (USEPA 2001). In short, while still fully protective, the Streamlined WER approach is more efficient, requiring only two sampling events with one test species, utilizing the design low-flow

1 of 9

¹ The situation described is precisely the case for the Town of Danville. While the data show an RPE for copper, neither acute toxicity (>1.0 TUa) nor chronic toxicity (>1.0 TUc) have been demonstrated in annual WET testing with two organisms (*C. dubia* and *P. promelas*) at 100% effluent.

dilution ratio, and allows for the use of the laboratory water test results or the results of a published toxicity database (Species Mean Acute Value or SMAV), whichever is greater, in the calculation of the WER.

Although the permitted endpoint for the WWTP biomonitoring is chronic, according to the Streamlined WER document, acute testing is applicable to both acute and chronic criteria. Both the Streamlined WER procedure (2001) and the October 2000 document "Response to Peer Review Comments on Streamlined Water-Effect Ratio Procedure for Discharges of Copper" (Delos et. al, 2000) confirm the appropriateness of this approach².

This report summarizes the results of the development of a site-specific Water Effect Ratio (WER) for copper using the USEPA Streamlined WER Procedure for Discharges of Copper (USEPA, 2001) (Streamlined WER). The Study Plan for the Site-specific Streamlined Water Effect Ratio for Copper (Study Plan) was submitted to and accepted by the Indiana Department of Environmental Management (IDEM) in August 2017.

3. GENERAL STUDY DESIGN

3.1 SAMPLE COLLECTION

According to the Streamlined WER and accepted Study Plan, samples for the Streamlined WER were to be collected a minimum of 30 days apart. The first sample for WER assessment, was collected September 25, 2017. The second sample for WER assessment, was collected October 31, 2017. Prior to the two WER studies, a sample of effluent was collected for rangefinder testing. The purpose of the rangefinder testing was to ascertain the approximate concentrations of copper necessary to perform the Streamlined WER tests. The results of the rangefinding test are not presented herein. As feasible, the sampling for the Streamlined WER tests also overlapped the routine Outfall 001 NPDES Permit monitoring for total copper, total lead, CBOD5, TSS, Ammonia-N, and pH. These data are presented in Table 1.

² From the Streamlined WER procedure: "In accord with the 1994 Interim Guidance and with common practice, the WER derived from acute tests is applied to both acute and chronic criteria. Because the involvement of strong binding agents causes the WER to increase as the effect concentration decreases, the WER derived from acute tests is expected to be protective of chronic effects." From Delos et. al, 2000 (in question and response form): "It was unclear if the WER derived from the streamlined procedure would apply only to acute criteria. Since this WER is essentially derived from acute data, wouldn't it potentially underestimate toxicity at a chronic level? The document has been clarified to indicate that the acute WER does apply to chronic criteria, per conventional practice. Although the chronic criterion is less than the acute criterion, this does not mean that the chronic WER is less than the acute WER. Rather the opposite is true. Because strong binders with limited capacity are involved, the "water-effect difference" (as opposed to ratio) tends to be similar across various effect concentrations. As a result the ratio tends to increase the sensitive the endpoint considered." (note that it is believed this last sentence includes a typo and that the phrase "sensitive the endpoint" was meant to read "sensitivity of the endpoint").

Table 1. Sum	mary of Ove	erlapping O	utfall 001 D	ata			
Associated Testing	Date	pH (s.u.)	CBOD5 (mg/L)	TSS (mg/L)	Ammonia (mg/L)	Copper (ug/L)	Lead (ug/L)
WER Event 1	09/25/17	8.1	2 to 4 ^(A)	3.3	0.1 ^(B)	86.5 ^(C)	0.069 ^(D)
WER Event 2	10/31/17	7.5	2	2.6	0.1	90.3	0.148

Notes:

- (A) CBOD5 results in the week prior to and following sampling for the WER study ranged from 2 to 4 mg/L
- (B) Ammonia results in the week prior to and following sampling for the WER study were all 0.1 mg/L
- (C) Total Copper results for 9/28/17 were 86.5 ug/L
- (D) Total Lead results for 9/28/17 were 0.069 ug/L

The Streamlined WER indicates that the site water used for testing is effluent and upstream receiving water "combined at the dilution corresponding to the design low flow condition that the permitting authority uses in permit limit calculations." For the West Fork of White Lick Creek, a 7Q10 flow of zero was utilized in the development of the Town of Danville's Permit limits³. As such, it is appropriate⁴ that the WER determinations were performed using 100% effluent. Therefore, the 24-hour composite effluent samples for the Streamlined WER were only collected at the existing Outfall 001 monitoring location.

3.2 TOXICITY TESTING

- USEPA Streamlined WER Procedure for Discharges of Copper (USEPA, 2001) was followed. The
 method requires a minimum of two WER determinations, approximately one month apart.
 Therefore, testing for WER determination was conducted September 26, 2017, and November 1,
 2017.
- Test species was *Ceriodaphnia dubia* (*C. dubia*). The organisms were obtained from in-house moderately hard water cultures⁵.
- Tests were initiated within 36-hours of sample collection.
- *C. dubia* were less than 24-hours old at test initiation per USEPA (2002). Test organisms were not fed during the test, but were fed prior to testing as outlined by the USEPA test procedures.
- Borosilicate glass beakers were utilized as the test vessels. Four replicates of five organisms per vessel were established. Test solution volumes (copper and control exposures) were a minimum of 15 mL (USEPA, 2002). Test vessels were covered with clear plastic sheet during testing in such a manner as to allow light penetration and gas exchange.
- Acute, definitive (minimum of five copper exposures), 48-hour toxicity tests were conducted

³ For example, application of a zero flow 7Q10 is observed in not only in the final copper limitations, but also in the WET limitations (benchmark of 1.0 TUc).

⁴ By deferring to the design low flow conditions in permit limit calculations, the Streamlined WER recognizes that the appropriate "critical" condition for protection can vary and will already be identified by the permitting authority. It is not uncommon for the "critical" condition to be no dilution (100% effluent, with compliance for both acute and chronic criteria applied at the end-of-pipe) and the Streamlined WER document does not include a prohibition on the range of dilution (including no dilution) allowed. Further supporting the appropriateness of using the Streamlined WER with 100% effluent (for 7Q10=0 receiving waters) are comments made by EPA Region 6 (AR0040967, 2014) on a draft plan proposed by an Arkansas NPDES Permitted facility. In the comments, the EPA instructed the facility that for the Streamlined WER procedure (for copper), they are to use 100% effluent: "...under the copper streamlined procedure, the simulated downstream water constitutes effluent and upstream water mixed at the design low flow dilution ratio (in the case of Van Buren's discharge, this means 100% effluent)."

⁵ Ramboll maintains their own cultures of *Ceriodaphnia dubia* and conducts monthly reference toxicity tests for assessment of organism health.

- following USEPA (2002) methodologies. Mortality (lack of movement upon gentle prodding) was the test endpoint. Test concentrations were determined by the results of the rangefinder test.
- Key test conditions for C. dubia are summarized in Table 2. The test temperatures were 25 +/- 1
 ^oC with a light:dark photoperiod of 16h:8h. Ramboll maintains written Standard Operating
 Procedures (SOPs) adhering to USEPA (2002) methodologies for C. dubia (SOPs available upon
 request).

Table 2. Overview of Streamlined W	ER Determination
Summary of Test Condition	ns for a <i>C. dubia</i> Acute WER Determination
Type Testing	48-hr Acute
Test Species	Ceriodaphnia dubia (C. dubia)
Organism Age	< 24 hrs old at test initiation
Number of Test Concentrations	Minimum of five plus a control
Number of Replicates	Four
Number of Organisms per Replicate	Five
Feeding During Test	None
Temperature	25±1°C
Photoperiod	Light:Dark 16h:8h
Copper source	Concentrated stock solution of reagent-grade copper sulfate (will not dilute waters by more than 10%)
Endpoint	Mortality

3.3 TEST WATERS

- Site water consisted of undiluted Outfall 001 effluent.
- Site water was collected during normal operating conditions, as 24-hour composite samples, under refrigeration (either refrigerated compositor or ice surrounded sample container)
- Filtration of site water through a plankton net to remove any indigenous organisms prior to toxicity testing was not necessary.
- Effluent samples were received at the testing laboratory at less than 6 °C and within 36-hours of sample collection.
- The laboratory test waters were reconstituted waters prepared according to USEPA (2002).
 - The laboratory test waters were reconstituted water with a total hardness similar to that of the effluent. Since the 7Q10 of the receiving stream is zero, no upstream receiving water will be used in the tests.
- A "laboratory control" of moderately hard water was established in parallel with each site water test and laboratory test to confirm the suitability of test organisms.
- The test compound used for spiking samples was reagent-grade copper sulfate. This reagent serves as a comparison of toxicity test results to those published in the Streamlined WER Appendix B and USEPA (1984 and 2007).
 - Copper sulfate was added to distilled water to prepare the stock solution for addition to test waters. The stock solution was of sufficient copper concentration that its addition to test waters (i.e., laboratory water or site water) did not dilute the test water by greater than 10%. Given the high solubility of copper sulfate, stirring of test solutions occurred for a minimum of 15 minutes. In keeping with Appendix A, Section E.15 of the USEPA Streamlined WER Procedure, the mixture was allowed to stand for 2 to 24 hours prior to use.
- Following rangefinder tests in site water, the WER test concentrations were established using a dilution factor of 0.7. Table 3 shows the nominal copper test concentrations in site water and laboratory water.

le 3. Nominal Copper Concentratio	ns (in μg/L)
Site Water Nominal Copper Concentration Added	Very Hard Laboratory Water Nominal Copper Concentration Added
0 - baseline	0 - baseline
84	5
120	7.2
171.5	10.3
245	14.7
350	21
500	30

3.4 ANALYTICAL ANALYSIS

- Ramboll documented water quality parameters in test waters (site test exposures and laboratory tests) as follows using standard methods:
 - At test initiation in test waters (effluent and reconstituted waters) prior to copper addition: total residual chlorine, total ammonia, total hardness, total alkalinity, pH, dissolved oxygen, specific conductance, DOC, TSS, and temperature (chemistry methods listed in Table 3).
 - At test initiation, after 24 hours, and at test termination in control and all copper exposures: pH, dissolved oxygen, specific conductance, and temperature.
 - Refer to Table 4 below for a summary of chemical analysis timeline.
- Total Copper analyses were conducted at test initiation and termination in all control and copper exposures. The average of these concentrations was used in all calculations.
 - Samples for total copper analysis were collected by Ramboll upon test solution preparation and at test termination. Aliquots of the samples were immediately collected in appropriate sample vessels with preservative. These aliquots were sent to a local contract laboratory for total copper analysis⁶. Copper analysis was by USEPA Method 200.8.

Table 4. WER Determination	Chemical Analysis	Fimeline
Parameter	Method	Test Schedule
Total Copper	EPA 200.8	test initiation; test termination
DOC	SM 5310	test initiation before copper addition
TSS	EPA 160.2	test initiation before copper addition
Total Residual Chlorine (TRC)	SM 4500-CI G	test initiation before copper addition
Total Ammonia	SM 4500-NH3 D	test initiation before copper addition
Total Hardness	SM 2340 C	test initiation before copper addition
Total Alkalinity	SM 2320 B	test initiation before copper addition
pH	SM 4500-H+ B	test initiation; after 24 hrs; test termination
Dissolved Oxygen	SM 4500-OG	test initiation; after 24 hrs; test termination
Specific Conductance	SM 2510 B	test initiation; after 24 hrs; test termination
Temperature	SM 2550 B	test initiation; after 24 hrs; test termination

5 of 9

⁶ TestAmerica Laboratories, Inc. TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204

4. CALCULATIONS, RESULTS, AND DISCUSSION

4.1 LC50 AND WER CALCULATIONS

- Toxicity test data were reported as Lethal Concentration to 50% of the exposed organisms (LC50).
 - All LC50 values were determined based on the average measured copper concentrations in test solutions.
 - LC50 values were calculated using commercial software approved by USEPA (CETIS, version 1.8.4.22).
- All tests initiated were valid and used in WER calculations.
- The laboratory water C. dubia copper LC50 values were compared to literature C. dubia copper LC50 values published by USEPA (1984 and 2007) in similar hardness waters to confirm that the sensitivity of Ramboll test organisms was similar to those listed in the USEPA criteria database.
- Laboratory water LC50 values, site water LC50 values, and SMAV LC50 values were normalized to the same hardness using the formula in Streamlined WER Appendix A.
- The normalized laboratory LC50 value, averaging both the lab water test results, were compared to the SMAV LC50 value. According to the Streamlined WER procedure, the larger of the two values is used in the WER calculation. Therefore, the SMAV (Streamlined WER Appendix B) was used in the final site WER (fWER) calculation.
- The final site WER (fWER) was determined as the geometric mean of the *C. dubia* WER values, for the two determinations using SMAV LC50 results.

4.2 RESULTS AND DISCUSSION

4.2.1 WATER QUALITY AND TEST ACCEPTABILITY

Water quality parameters monitored in control exposures (0 - baseline concentration) measured at test initiation, 24-hr exposure, and at test termination indicated conditions acceptable for toxicity testing (attached Table 5). The dissolved oxygen concentrations ranged from 7.7 mg/L to 8.6 mg/L in the site water and laboratory water tests. The pH in the site water tests ranged from 7.58 to 8.65 s.u. The pH in the laboratory test controls were slightly lightly less, ranging from 7.95 to 8.18 s.u. The increase in pH in the site waters is not uncommon given the higher alkalinity concentrations (site water total alkalinity values were 255 and 270 mg/L CaCO3). Alkalinity is a measure of the buffering capacity of the carbonate/bicarbonate ions, and to some extent, the hydroxide ions of water. When the three ions react with hydrogen ions an increasing pH is observed. The target hardness of the laboratory water was consistent with that of the site water hardness (i.e. approximately 250 mg/L CaCO3). The conductivity values of the site water ranged from 1,607 to 2,120 µmhos/cm while the laboratory water conductivity values ranged from 566 to 649 µmhos/cm. In the site waters, TRC and total ammonia values were less than 0.05 mg/L and 0.30 mg/L, respectively. TRC and total ammonia were non-detect in the laboratory waters. No test organism mortality was observed in the site water and laboratory water controls. There was 10 percent organism mortality observed in one of the laboratory water secondary control of moderately hard water. Test organism mortality of 10 percent or less is required by the test method (USEPA 2002) to be considered an acceptable test. In summary:

- Water quality parameters were suitable for determination of coper toxicity;
- Site water had a higher hardness and conductivity values than those observed in the laboratory water;
- USEPA test acceptability criteria were met for all toxicity tests (i.e., control organism mortality of 10 percent or less)

4.2.2 COPPER TOXICITY TO C. DUBIA

The nominal and measured copper concentrations along with corresponding mortality for each test are presented on attached Table 6. A copper toxicity dose response-relationship was observed in all site water and laboratory water tests. The copper concentrations in site water that caused a dose response-relationship were significantly higher than the concentrations in the laboratory water. The measured copper concentrations in the control (i.e., baseline concentrations in the site water) tests were 100 and 97 μ g/L copper, respectively. These values are also consistent with historical Outfall 001 total copper concentrations.⁷ The measured copper concentrations were consistent in both the site water tests. This consistency indicated good precision with a relative percent difference of less than 20 percent for the initial and final measured copper concentrations. The targeted nominal copper concentrations were also within 20 percent of the measured copper concentrations (after accounting for the average copper baseline concentrations of 100 and 97 μ g/L copper). Measured baseline copper concentrations in the laboratory water tests were consistently less than 3 μ g/L.

An LC50 value was obtained from each of the site water tests with at least one concentration resulting in no mortality, at least one concentration resulting in partial mortality and at least one concentration resulting in complete mortality. There was no mortality observed in the baseline concentration or the secondary control of moderately hard water.

The LC50 values for laboratory waters were relatively constant. The LC50 values in the effluent were slightly more variable, however this could be due to a difference in water chemistry values. The LC50 values of the site and laboratory waters are presented in Table 7-A. For comparison of the LC50 values, the data were normalized to a hardness value of 275 mg/L per the Streamlined WER procedure. This normalization resulted in site water LC50 values of 361.8 and 277.7 μ g/L copper, respectively for the first and second determinations. The laboratory water normalized LC50 values were 14.3 and 10.8 μ g/L copper, respectively for the first and second determination of copper in laboratory water. The two laboratory LC50 values were averaged to yield one value for the WER calculation (12.6 μ g/L copper).

-

 $^{^{7}}$ Total copper in the current permit cycle (23 results from Feb 2017 through mid Feb 2018) ranges 15.2 - 110 ug/L with an average value of 74 ug/L. For the months near and including collection of samples for the WER study (8 results from Aug – Nov 2017) the total copper ranged 72 – 110 ug/L, with an average of 93 ug/L.

4.2.3 FINAL WER (FWER)

The Streamlined WER allows for the use of the laboratory water test results or the results of a published toxicity database (SMAV), whichever is greater, in the calculation of the WER. Therefore, the normalized laboratory water LC50 value was compared to the normalized SMAV LC50 value from Appendix B of the Streamlined WER. As stated above, the normalized laboratory water LC50 value was 12.6 μ g/L copper, while the normalized SMAV LC50 value was 62.3 μ g/L copper. Given the normalized LC50 values, the WER was calculated by dividing the normalized site-water LC50 by the normalized SMAV value (Table 7-B). However, because the WER value from the first test was greater than five (5), a value of five (5) was used in the calculation of the fWER, so that the fWER will be five (5) or less. The geometric mean of the two test WERs (5.8 set equal to 5.0 for test 1 and 4.5 for test 2) was then calculated to determine the fWER of 4.7 for total copper.

5. CONCLUSIONS

USEPA test acceptability criteria and data quality requirements were met for the toxicity tests used in the derivation of the site-specific streamlined WER values applicable to the Town of Danville discharge. The test data demonstrate that organisms exposed to the site water can tolerate a higher concentration of total copper than in laboratory water, even laboratory water that has increased hardness. The results of the data also indicate that hardness is not the only factor in copper toxicity. The site water has higher dissolved organic carbon, total alkalinity and pH compared to the laboratory water, signifying that these are also important drivers in copper toxicity.

Based on the USEPA Streamlined WER Guidance and results of the Study Plan, a site-specific WER of 4.7 for total copper is applicable to the discharge of the Town of Danville. Site-specific modifications to criteria are allowed pursuant to 327 IAC 2-1-8.9. A comparison of current Permit limits for copper (developed with the default WER = 1.0) and projected limits (developed with the determined site-specific WER=4.7) are shown below.

- Current Permit limits for Copper
 - o Basis: WER = 1.0; Hardness = 250 mg/L
 - Monthly Average Limit: 21 μg/L
 - Daily Maximum Limit: 42 μg/L
- Projected Permit limits for Copper
 - Basis: WER = 4.7; Hardness = 250 mg/L
 - Monthly Average Limit: 100 μg/L
 - o Daily Maximum Limit: 200 μg/L

This report summarizing the development of a site-specific WER (4.7) for total copper will be used as the basis of a request for a site-specific modification to both the chronic and acute aquatic life criteria for copper and associated Permit limits.

6. REFERENCES

Delos, C., Jiapizain, P., Dimond, W., and Roberts, C., 2000. *Response to Peer Reviewed Comments on Streamlined Water-Effect Ratio Procedure for Discharges of Copper*. EPA-823-B-94-001. USEPA Office of Water. Washington, DC. February 1994.

AR0040967, 2014. Facility responses to EPA Region 6 comments on draft WER Work Plans. June 2014. (Available through the Arkansas Department of Environmental Quality website)

USEPA, 1984. Guidelines for Deriving Numerical Aquatic Site-Specific Water Quality Criteria by Modifying National Criteria. Washington, DC. January 1984.

USEPA, 1984. Ambient Water Quality Criteria for Copper. EPA 440/5-84-031. Washington, DC. January 1985.

USEPA, 1994. *Interim Guidance and on Determination and Use of the Water-Effect Ratios for Metals*. EPA-823-B-94-001. USEPA Office of Water. Washington, DC. February 1994.

USEPA, 2001. Streamlined Water-Effect Ratio Procedure for Discharges of Copper. EPA-822-R-01-005. USEPA Office of Water. Washington, DC. March 2001.

USEPA, 2002. Methods for Estimating the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms Fifth Edition. EPA-821-R-02-012. USEPA Office of Water. Washington, DC. October 2002.

USEPA, 2007. *Aquatic Life Ambient Freshwater Quality Criteria – Copper 2007 revision*. EPA-822-R-07-001. USEPA Office of Water. Washington, DC. February 2007.

9 of 9

TABLE 5. MEASURED ANALYTICAL DATA IN SITE AND LABORATORY TEST WATERS

Site Water Test 1 (100% Effluent)

Sample Date: 09/24/17 - 09/25/17

Test Date: 09/26/17 - 09/28/17

	Nominal Copper Concentration Added																				
Parameter	0	- baselir	e	84 µg/L				120 µg/l		1	71.5 µg	/L	ĺ	245 µg/l	í		350 µg/t	-		500 µg/l	
	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hr
Measured Copper (μg/L)	97.6		103	175		177	203		215	255	_	261	299	***	330	412		427	544	***	552
Dissolved Oxygen (mg/L)	8.0	7,7	7.8	7,9	7.6	7.7	7.8	7.7	7.7	7.9	7.6	7.7	8.0	7.6	7.6	7.9	7.7	7.7	7.9	7.6	7,7
pH ^(A) (s.u.)	7.78	8.40	8.51	7.86	8.41	8.54	7.86	8.42	8.54	7.86	8.39	8.53	7.85	8.38	8.51	7.85	8.38	8.52	7.82	8.33	8.50
Temperature (°C)	25.0	25.1	24.9	24.5	25.0	24.8	24.7	25.0	25.1	24.6	24.9	24.8	24.9	25.0	24.9	25.1	24.9	25.1	25.6	25.2	24.9
Conductivity (µmhos/cm)	1,608	1,566	2,120	1,901	1,807	2,120	2,000	1,974	2,140	2,080	2,070	2,200	2,110	2,110	2,200	2,110	2,120	2,200	2,090	2,130	2,16

Mod	Hard Co	ontrol
	24 hrs	
7.8	7.8	7.6
7.54	7.56	7.63
25.0	25.3	25.1
205	223	254

Also measured for	Dissolved Organic Carbon	Total Suspended Solids	Totat Residual Chlorine	Ammonia	Hardness (as CaCO₁)	Alkalinity (as CaCO ₁)
"0 - baseline"	13.1 mg/L	1.2 mg/L	0.03 mg/L	0.28 mg/L	273 mg/L	255 mg/L

Notes: (A) The observed increase in pH was due to the higher alkalinity concentration.

Site Water Test 2 (100% Effluent)

Sample Date: 10/30/17 - 10/31/17

Test Date: 11/01/17 - 11/03/17

									Nomina	l Coppe	r Conce	ntration /	Added		•							
Parameter	0	- baselir	ie		84 µg/L			120 µg/	L	1	l 71.5 μg	L L		245 μg/l	- 1		350 µg/l		1	500 µg/l	_	
	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	
Measured Copper (µg/L)	99.3	_	93.9	158	_	172	193	_	204	238		254	301		349	393		425	554		544	
Dissolved Oxygen (mg/L)	8.6	8.5	8.6	8.4	8.4	8.4	8.3	8.4	8.1	8.4	8.6	8.0	8.3	8.4	8.0	8.6	8.4	7.9	8.4	8.4	7.8	
pH ^(A) (s.u.)	7.58	7.98	8.65	7,61	8.23	8.69	7.63	8.40	8.66	7.64	8.46	8.68	7.65	8.46	8.61	7.65	8.48	8.60	7.62	8.48	8.58	
Temperature (°C)	24.4	24.7	24.7	24.6	25.0	25.3	24.6	25.1	25.4	24.7	25.2	25.3	24.7	25.1	24.5	24.8	25.1	24.6	24.7	25.0	24.8	
Conductivity (µmhos/cm)	1,833	1,710	1,617	1,954	1,806	1,849	2,040	1,937	2,010	2,060	1,970	2,090	2,070	2,070	2,120	2,050	2,080	2,150	2,060	2,050	(B)	
Also measured for	Disso	Dissolved Organic Carbon Total Suspen				nded So	olids	Tot	at Resid	lual Chic	rine	Amr	nonia	На	rdness	(as CaC	O ₃)	Alkalir	nity (as C	CaCO ₃)		
"0 - baseline"		14.0	mo/f			3 25	mo/l		ì	0.02	ma/I		0.22	mo/I		304	mo/l			270 mg/l		

ſ	Mod	Hard Co	ontrol
١	0 hrs	24 hrs	48 hrs
		_	
	8.3	8.4	8.4
	7.30	7.45	7.97
	24.7	25.2	24.9
***************************************	216	216	218

Notes:
(A) The observed increase in pH was due to the higher alkalinity concentration.
(B) Parameters are often not measured when there are no longer living organisms in a concentration.

TABLE 5. MEASURED ANALYTICAL DATA IN SITE AND LABORATORY TEST WATERS

Lab Water Test 1 (Very Hard Water)

Stock Prep Date: 11/1/2017

Test Date: 11/01/17 - 11/03/17

	ı								Nomina	i Coppe	r Conce	ntration A	Added								
Parameter	0 - baseline				5 µg/L			7.2 µg/L		10.3 μg/L			14.7 µg/L				21 µg/L		30 µg/L,		
	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	: 48 hrs	0 hrs	24 hrs	48 hr
Measured Copper (µg/L)	<2.0		2.58	4.59		4.17	6.85		6.56	9.95		8.51	14.2		12.0	20.6	_	17,1	30.6		27.0
Dissolved Oxygen (mg/L)	8.6	8.3	8.5	8.7	8.4	8.2	8.7	8.4	8.2	8.6	8.6	8.2	8.6	8.4	8.1	8.6	8.2	8.1	8.6	8.2	8.1
pH (s.u.)	8.06	8.18	8.17	8.07	8.20	8.20	8.07	8.20	8.21	8.06	8.20	8.22	8.06	8.21	8.22	8.06	8.20	8.22	8.06	8.20	8.23
Temperature (°C)	24.0	24.9	25.1	14.0	25.0	25.3	24.1	25.1	24.9	24.1	25.0	25.3	24.3	25.0	25.1	24.4	25.1	25.6	24.3	25.0	25.4
Conductivity (µmhos/cm)	566	608	649	583	650	707	634	666	711	636	670	718	637	663	707	632	664	714	627	659	705

Mod	Hard Co	ontrol
0 hrs	24 hrs	48 hrs
_		ı
8.3	8.4	8.4
7.30	7.45	7.97
24.7	25.2	24.9
216	216	218

				-		
Also measured for	Dissolved Organic Carbon	Total Suspended Solids	Totat Residual Chlorine	Ammonia	Hardness (as CaCO₃)	Alkalinity (as CaCO ₃)
"0 - baseline"	(A)	(A)	< 0.02 mg/L	< 0.1 mg/L	244 mg/L	61 mg/L

(A) Dissolved Organic Carbon in lab water has been historically less than 1.0 mg/L or non-detect. Due to the filtration system on the laboratory's dionized water system, Total Suspended Solids are non-detect.

Lab Water Test 1 (Very Hard Water)

Stock Prep Date: 12/20/2017

Test Date: 12/20/17 - 12/22/17

	į								Nomina	al Coppe	er Conce	ntration.	Added								
Parameter	0	- baseli	ne		5 μg/L			7.2 µg/	L		10.3 µg/	ŗ		14,7 µg/	L		21 µg/L		l	30 µg/L	
	0 hrs	24 hrs	. 48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	48 hrs	0 hrs	24 hrs	: 48 hrs	0 hrs	24 hrs	48 hrs
Measured Copper (μg/L)	< 2 (A)		< 2 (A)	3.17		3.84	4.63	_	5.44	10.2	•••	9.17	9.86	· •••	11.7	14.5		15.7	24.2	<u> </u>	. 25.0
Dissolved Oxygen (mg/L)	8.4	8.3	8.4	8.6	8.2	8.4	8.5	8.4	8.3	8.2	8.3	8.3	8.3	8.2	8.0	8.2	8.2	8.1	8.3	8.0	8.0
pH (s.u.)	7.95	8.11	8.14	7.98	8.06	8.12	8.00	8.08	8.16	8.02	8.07	8.15	8.03	8.04	8.16	8.04	8.12	8.19	8.04	8.14	8.20
Temperature (°C)	24.2	24.6	24.5	24.4	24.5	24.4	24.6	24.7	24.6	24.5	24.6	24.2	24.6	24.5	24.5	24.4	24.8	24.4	24.6	24.8	24.3
Conductivity (µmhos/cm)	590	587	582	591	602	612	592	606	604	592	597	601	597	595	602	589	601	606	584	601	596
Also measured for	Disso	lved Or	rganic Ca	rbon	Tota	al Suspe	nded So	olids	Tot	at Resid	iual Chlo	rine	Amr	nonia	Ha	rdness	(as CaC	O ₃)	Alkali	nity (as C	CaCO ₃)

-	Mod Hard Control											
İ	0 hrs	24 hrs	48 hrs									
ļ	8.7	8.7	8.5									
1	7.99	7.95	8.00									
I	24.4	24.2	24.9									
	225	240	234									

Also measured for	Dissolved Organic Carbon	Total Suspended Solids	Totat Residual Chlorine	Ammonia	Hardness (as CaCO ₃)	Alkalinity (as CaCO ₃)
"0 - baseline"	(B)	(B)	< 0.02 mg/L	< 0.1 mg/L	268 mg/L	93 mg/L

Notes:

(A) Copper samples for baseline (no added copper) T0 hrs and T48 hrs were inadvertantly not collected for analysis. Based on the baseline copper results for the first test with very hard water (11/01/17-11/03/17), the copper method reporting limit (2.0 µg/L) is listed and was used for any associated calculations.
(B) Dissolved Organic Carbon in lab water has been historically less than 1.0 mg/L or non-detect. Due to the filtration system on the laboratory's dionized water system, Total Suspended Solids are non-detect.

TABLE 6. NOMINAL AND MEASURED COPPER CONCENTRATIONS WITH PERCENT MORTALITY

Site Water Test 1 (100% Effluent)

Sample Date: 09/24/17 - 09/25/17

Test Date: 09/26/17 - 09/28/17

Nominal Copper Concentration Added	T0 hrs Measured Copper (ug/L)	T48 hrs Measured Copper (ug/L)	Absolute RPD (T0 vs T48 hrs)	Ave. Measured Copper (ug/L)	Absolute RPD (Ave measured minus baseline vs. Nominal)	Percent Mortality
0 - baseline	97.6	103	5%	100	na	0%
84	175	177	1%	176	10%	0%
120	203	215	6%	209	10%	0%
171.5	255	261	2%	258	8%	5%
245	299	330	10%	315	13%	20%
350	412	427	4%	420	9%	85%
500	544	552	1%	548	11%	100%

Site Water Test 2 (100% Effluent)

Sample Date: 10/30/17 - 10/31/17

Test Date: 11/01/17 - 11/03/17

Nominal Copper Concentration Added	T0 hrs Measured Copper (ug/L)	T48 hrs Measured Copper (ug/L)	Absolute RPD (T0 vs T48 hrs)	Ave. Measured Copper (ug/L)	Absolute RPD (Ave measured minus baseline vs. Nominal)	Percent Mortality
0 - baseline	99.3	93.9	6%	96.6	na	0%
84	158	172	8%	165	20%	0%
120	193	204	6%	199	16%	0%
171.5	238	254	7%	246	14%	0%
245	301	349	15%	325	7%	70%
350	393	425	8%	409	11%	100%
500	554	544	2%	549	10%	100%

Lab Water Test 1 (Very Hard Water)

Stock Prep Date: 11/1/2017

Test Date: 11/01/17 - 11/03/17

Nominal Copper Concentration Added	T0 hrs Measured Copper (ug/L)	T48 hrs Measured Copper (ug/L)	Absolute RPD (T0 vs T48 hrs)	Ave. Measured Copper (ug/L)	Absolute RPD (Ave measured vs. Nominal)	Percent Mortality
0 - baseline	< 2.0	2.58	25%	2.3	14% (A)	0%
5	4.59	4.17	10%	4.4	13%	0%
7.2	6.85	6.56	4%	6.7	7%	0%
10.3	9.95	8.51	16%	9.2	11%	10%
14.7	14.2	12.0	17%	13.1	12%	45%
21	20.6	17.1	19%	18.9	11%	100%
30	30.6	27.0	13%	28.8	4%	100%

(A) Detection limit (2.0 ug/L) used for nominal baseline concentration.

TABLE 6. NOMINAL AND MEASURED COPPER CONCENTRATIONS WITH PERCENT MORTALITY

Lab Water Test 2 (Very Hard Water)

Stock Prep Date: 12/20/2017

Test Date: 12/20/17 - 12/22/17

Nominal Copper Concentration Added	T0 hrs Measured Copper (ug/L)	T48 hrs Measured Copper (ug/L)	Absolute RPD (T0 vs T48 hrs)	Ave. Measured Copper (ug/L)	Absolute RPD (Ave measured vs. Nominal)	Percent Mortality
0 - baseline	< 2.0 (A)	< 2.0 (A)	0%	2.0	0% (B)	0%
5	3.17	3.84	19%	3.5	35%	0%
7.2	4.63	5.44	16%	5.0	35%	5%
10.3	10.2	9.17	11%	9.7	6%	30%
14,7	9.86	11.7	17%	10.8	31%	60%
21	14.5	15.7	8%	15.1	33%	80%
30	24.2	25	3%	24.6	20%	100%

(A) Copper samples for baseline (no added copper) T0 hrs and T48 hrs were inadvertantly not collected for analysis. Based on the baseline copper results for the first test with very hard water (11/01/17-11/03/17), the copper method reporting limit (2.0 µg/L) is listed and was used for any associated calculations.

(B) Detection limit (2.0 µg/L) used for nominal baseline concentration in calculations

TABLES 7-A & 7-B. STREAMLINED WATER EFFECT RATIOS (WERS) FOR TOTAL COPPER

Table 7-A; Ceriodaphnia dubia LC50 and Species Mean Acute Values (SMAVs) Standarized to 275 mg/L (as CaCO_a) Hardness

Table 1-A. Ceriodaprinia dobia Ecoo and Species ivieal: Acute Values (SIVIAVS) Standarized to 275 flight (as CaCO ₃) Hardriess									
Description	Test 1 with 100% Effluent	Test 2 with 100% Effluent	Lab Water Test 1	Lab Water Test 2	Lab Water Average	SMAV from the 2001 Streamlined WER Procedure ^(C)			
Test Dates	09/26/17-09/28/17	11/01/17-11/03/17	11/01/17-11/03/17	12/20/17-12/22/17	11/2017 & 12/2017	na			
Sample Hardness (as mg/L CaCO ₃)	276	304	244	268	na	100			
LC50 (µg/L of total copper) at Measured Sample Hardness ^(A)	363.0	305.2	12.78	10.55	na	24.0			
Normalized LC50 (μg/L of Cu) at 275 mg/L (as CaCO ₃) Hardness ^(B)	361.8	277.7	14.3	10.8	12.6	62.3			

Notes

- (A). LC50 based on average measured copper concentrations. Nominal and measured concentrations are presented in both Table 3-1 and Table 3-2.
- (B) Normalized LC50 for 275 mg/L (as CaCO3) hardness calculated per the 2001 Streamlined WER Procedure for Discharges of Copper:
- LC50 for specific hardness = LC50 at sample hardness * (Specific Hardness/Sample Hardness) * 0.9422
 (C) C. dubia SMAV for hardness 100 mg/L presented in the 2001 Streamlined WER Procedure for Discharges of Copper, Appendix B.

Table 7-B: Calculated WERs for Total Copper

Basis of Comparison	Calculated ^(A) Site WER for Test 1 with 100% Effluent	Calculated ^(A) Site WER for Test 2 with 100% Effluent	Calculated ^(B) Final WER (fWER)
Average Lab Water LC50	28.8	22.1	25.2
SMAV from the 2001 Streamlined WER Procedure	5.8 (value of 5.0 used in fWER calculation)	4.5	4.7

Notes:

- (A): Site WERs calculated by dividing the normalized sample LC50 by the Lab Water LC50 or Reference SMAV
- (B): fWER is the geometric mean of the Test 1 and Test 2 Site WERs. For any site WER > 5, a value of 5 will be used in in calculation of the fWER.

APPENDIX

BENCH SHEETS & ANALYTICAL DATA CONTROL CHARTS

Site Water Event 1 Documents

48-HR ACUTE TOXICITY TEST DATA SHEET EPA-821-R-02-012 Method 2002.0

LOG: JOB NO: CLIENT: EFFLUENT: SAMPLE "B" NOS SAMPLE DATE: ORGANISM SOUR	9/24-25/17	ORGANIS ORGANIS PHOTOP START D END DAT	RGANISM: Ceriodal SM AGE (date): 9/25/24 SM SOURCE: 1190 PERIOD 16 hrs li DATE/TIME: 9/2/24	(n-/ ght/8 hrs dark	40 hr 1 CED = 28	VOLUME: 6/VESSEL: 5: R: MADE BY:	30 mL 15 - 20 mL 5 4 Type: Elly No. 30% 20% Time: Onlo intts: / M 1 = 257.7 - 309.9
Conc Vessel	Survival (#)		DO (mg/L)	pH (s.u. 0 24) <u>Tem</u>	perature (°C)	Conductivity (umhos/cm
(ppb) ID	0 24 48	DEAD					1608
Basefine A Effluent B C D 84 A B C	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 000000	7.7 7.8	7.5% 7.7% 8.40 7.8%	345	250 248	1901 1901 1907 2120
D 120.1 A B C D	5 5 5 5 5 5 5 5 5	0000	7.8		8.54	25.() 25.1	2001 2140
171.5 A B C D	5 5 5 5 4 4 5 5 5	0 0 -0	7.9 7.7	7.5% 8.39	8.53	244	2010 <i>2.210</i>
	1110111001			Control Primary	100% Effluent	Comments:	
Params: Inītials: Time: Date:	1410 1330 1350 1412 5	5	Hardness (mg/L) Alkalinity (mg/L) TRC (mg/L) Ammonia (mg/L)	28C	#TG 255 0.0.0	MH made: N	A 101019 24117 04.7

Page 2 of 2

48-HR ACUTE TOXICITY TEST DATA SHEET

	EPA-821-R-02	2-012 Method 2002.0			
LOG: JOB NO: CLIENT: EFFLUENT:	19011 3840087 B Town of Danville Ocklass COI	TEST TYPE: TEST ORGANISM: SAMPLE B #: TEST START DATE:	Static, Daily Renewal Ceriodaphnia dubia	TEST VESSEL CAPACITY: TEST SOLUTION VOLUME: NO. ORGANISMS/VESSEL: NO. REPLICATES:	30 mL 15 - 20 mL 5
Conc Vessel (ppb) ID	Survival (#) 0 24 48	DO (mg DEAD 0 24	/L) pH (s.u 48 0 24	.) Temperature (°C) 48 0 24 48	Conductivity (umhos/cm) 0 24 48
245 A B C D 350 A B C D 500 A B C D UH A	5 5 5 5 5 5 5 7 3 5 7 5 5 7 5 7 7 7 7	O 80 140 1	7.85 7.85 7.85 7.32 7.7 8.63 7.94 7.64 7.64	25 1 25 0 24 9 25 1 25 0 24 9 25 1 25 1 25 1 25 1 25 1 25 1 25 1 25	3110 2200 2110 2200 2110 2200 2090 2200 2090 2130 2160 2090 223 254
		Comm	nenus:		

Report Date: Test Code: 09 Oct-17 15:49 (p 1 of 2) 19011cd | 04-1389-8781

Ceriodaphn	ia 48-h Acute Sur	vival Test								Ramb	oll Environ
Analysis ID: Analyzed:	00-4804-4987 09 Oct-17 15:4		ipoint: ilysis:	48h Survival Ra Untrimmed Spe		rber		IS Version: ial Results		.8.4	
Batch ID: Start Date: Ending Date Duration:	01-0911-8959 26 Sep-17 e: 28 Sep-17 48h	Pro Spa	Test Type: Survival (48h) Protocol: EPA/821/R-02-0 Species: Ceriodaphnia dul Source: In-House Culture)	Ana Dilu Brin Age	ent: Effl e: Not	uent diluting Applicable	toxicant	
	00-7607-7111 e: 25 Sep-17 e: 26 Sep-17 e: 24h	Sou	de: terial: urce: tion:	488D837 POTW Effluent WER Outfall 001				Client: Town of Danville Project: Special Studies			
Sample Not	e: 1st WER Event	Nom	inal								
Spearman-i	Kärber Estimates										
Threshold C		nreshold	Trim	Mu	Sigma	·····	LC50	95% LCL			
Control Thre			0.00%	2.451	0.02005		282.6	257.7	309.9		
Test Accept Attribute	ability Criteria Test Stat	TAC Limi	i en	Overlap	Decisio	•					
Control Resp		0.9 - NL	15	Yes		Acceptability	Criteria				
	Rate Summary		•			ulated Varia					·
C-%	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
0	Dilution Water	4	1	1	1	0	0	0.0%	0.0%	20	20
84		4	1	1	1	0	0	0.0%	0.0%	20	20
120.1		4	1	1	1	0	0	0.0%	0.0%	20	20
171.5		4	0.95	8.0	1	0.05	0.1	10.53%	5.0%	19	20
245		4	8.0	0.6	1	0.1155	0.2309	28.87%	20.0%	16	20
350		4	0.15	0	0.2	0.05	0.1	66.67%	85.0%	3	20
500		4	0	0	0	0	0		100.0%	0	20
	l Rate Detail										
C-%	Control Type	Rep 1	Rep 2		Rep 4						
0	Dilution Water	1	1	1	1						
84		1	1	1	1						
120.1		1	1	1	1						
171.5		1	1	8.0	1						
245		1	1	0.6	0.6						
350		0	0.2	0.2	0.2						
500		0	0	0	0						
	l Rate Binomials										
C-%	Control Type	Rep 1	Rep 2	-	Rep 4						
					5/5						
0	Dilution Water	5/5	5/5	5/5							
0 84	Dilution Water	5/5	5/5	5/5	5/5						
0 84 120.1	Dilution Water	5/5 5/5	5/5 5/5	5/5 5/5	5/5 5/5						
0	Dilution Water	5/5	5/5	5/5	5/5 5/5 5/5						
0 84 120.1 171.5 245	Dilution Water	5/5 5/5 5/5 5/5	5/5 5/5	5/5 5/5	5/5 5/5						
0 84 120.1 171.5	Dilution Water	5/5 5/5 5/5	5/5 5/5 5/5	5/5 5/5 4/5	5/5 5/5 5/5						

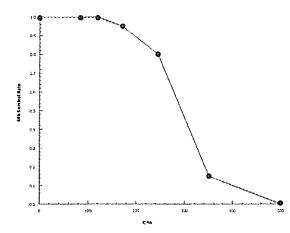
Report Date: Test Code:

09 Oct-17 15:49 (p 2 of 2) 19011cd | 04-1389-8781

Ceriodaphnia 48-h Acute Survival Test

Ramboll Environ

Analysis ID: Analyzed:


00-4804-4987 09 Oct-17 15:48

Analysis:

Endpoint: 48h Survival Rate Untrimmed Spearman-Kärber **CETIS Version:** Official Results: **CETISv1.8.4**

Yes

Graphics

Report Date: 08 Dec-17 14:18 (p 1 of 2)

Test Code: 19011 MEASURED | 00-2700-6027

							1631	0040.			
Cerioda	phnia 48-h Acute Sur	vival Test								Rami	ooll Enviro
Analysi: Analyze			point: lysis:	48h Survival Ra Linear Interpola)		S Version: ial Results:	CETISv1.	8.4	
Batch II				Survival (48h)			Analyst:				
Start Da	•		Protocol: EPA/821/R-02-0				Dilue		ent diluting	toxicant	
Ending		-	Species: Ceriodaphnia dubi				Brine		Applicable		
Duratio	n: 48h	500	irce:	In-House Cultur	е		Age:				
Sample		Cod		488D837			Clier		n of Danville)	
	Date: 25 Sep-17		erial:	POTW Effluent			Proje	ect: Spe	cial Studies		
	Date: 26 Sep-17 Age: 24h		rce: ion:	WER Outfall 001							
Sample											
	Note: 1st WER Even	t - MEASUR	EDTO	and 148 average	d						
	nterpolation Options		al .	Danamalaa	Eva 05%	CI Mo	thad				
X Trans Linear	form Y Transforr Linear		d 8662	Resamples 1000	Exp 95% Yes		thod o-Point Interp	olation			
		134			,						-
	ceptability Criteria										
Attribut		TAC Limi	ts	Overlap	Decision		u Calledia				
Control	Resp 1	0.9 - NL		Yes	Passes A	cceptabilit	y Criteria				
Point E	stimates										
Level	% 95% LCL	95% UCL		95% LCL	95% UCL						
LC50	363 322.8	386.2	0.275	5 0.2589	0.3098						
48h Sui	vival Rate Summary				Calcu	ılated Var	iate(A/B)				
C-%	Control Type	Count	Меап	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
100.3	Dilution Water	4	1	1	1	0	0	0.0%	0.0%	20	20
176		4	1	1	1	0	0	0.0%	0.0%	20	20
209		4	1	1	1	0 0.05	0 0.1	0.0% 10.53%	0.0% 5.0%	20 19	20 20
258 314.5		4	0.95 0.8	0.8 0.6	1	0.05	0.1	28.87%	20.0%	16	20
419.5		4	0.15	0.0	0.2	0.05	0.1	66.67%	85.0%	3	20
548		4	0	0	0	0	0		100.0%	0	20
48h Su	rvival Rate Detail										
C-%	Control Type	Rep 1	Rep	Rep 3	Rep 4						
100.3	Dilution Water	1	1	1	1						
176		1	1	1	1						
209		1	1	1	1						
258		1	1	0.8	1						
314.5		1	1	0.6	0.6						
419.5		0	0.2 0	0.2 0	0.2 0						
548	rvival Rate Binomials		<u> </u>	<u> </u>	<u> </u>						
46n Su C-%	Control Type	Rep 1	Rep	2 Rep 3	Rep 4						
100.3	Dilution Water	5/5	5/5	2 Kep 3 5/5	5/5						
176	Siddle Traite	5/5	5/5	5/5	5/5						
		5/5	5/5	5/5	5/5						
209		5/5	5/5	4/5	5/5						
209 258		0.0			A						
		5/5	5/5	3/5	3/5						
258			5/5 1/5 0/5	3/5 1/5 0/5	3/5 1/5 0/5						

Report Date:

08 Dec-17 14:18 (p 2 of 2)

Test Code:

19011 MEASURED | 00-2700-6027

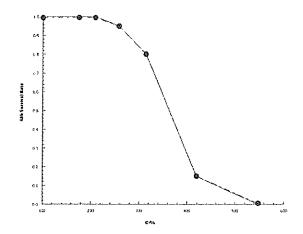
Ceriodaphnia 48-h Acute Survival Test

Ramboll Environ

Analysis ID: Analyzed: 18-2660-2753 08 Dec-17 14:18

Endpoint: Analysis:

Endpoint: 48h Survival Rate


Linear Interpolation (ICPIN)

CETIS Version:

CETISv1.8.4

Official Results: Yes

Graphics

Client: Ramboll Environ US Corporation Project/Site: 3rd Quarter Water Quality

TestAmerica Job ID: 490-137433-1

Client Sample ID: Effluent Bas Date Collected: 09/26/17 00:01 Date Received: 09/26/17 13:00	eline	T0 efful	ent			Lab Sample ID: 490-137433- Matrix: Wate
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared Analyzed Dil Fa
Copper	0.0976		0.00200		mg/L	09/27/17 09:07 09/27/17 18:25
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared Analyzed Dil Fa
Total Suspended Solids	1.20		1.20		mg/L	09/27/17 22:08
Client Sample ID: Effluent 84 T Date Collected: 09/26/17 00:01 Date Received: 09/26/17 13:00	Γ0					Lab Sample ID: 490-137433- Matrix: Wate
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared Analyzed Dil F.
Copper	0.175		0.00200		mg/L	09/27/17 09:07 09/27/17 17:52
Client Sample ID: Effluent 120 Date Collected: 09/26/17 00:01 Date Received: 09/26/17 13:00	ТО					Lab Sample ID: 490-137433- Matrix: Wate
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared Analyzed Dil F
Copper	0.203		0.00200		mg/L	09/27/17 09:07 09/27/17 17:55
Client Sample ID: Effluent 171 Date Collected: 09/26/17 00:01 Date Received: 09/26/17 13:00	.5 T0					Lab Sample ID: 490-137433- Matrix: Water
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared Analyzed Dil F
Copper	0.255		0.00200		mg/L	09/27/17 09:07 09/27/17 17:58
Client Sample ID: Effluent 245 Date Collected: 09/26/17 00:01 Date Received: 09/26/17 13:00	ТО					Lab Sample ID: 490-137433- Matrix: Wat
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared Analyzed Dil F
Copper	0.299		0.00200		mg/L	09/27/17 09:07 09/27/17 18:01
Client Sample ID: Effluent 350 Date Collected: 09/26/17 00:01 Date Received: 09/26/17 13:00	ТО					Lab Sample ID: 490-137433- Matrix: Wat
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared Analyzed Dil F
Copper	0.412		0.00200		mg/L	09/27/17 09:07 09/27/17 18:04

Client: Ramboll Environ US Corporation Project/Site: 3rd Quarter Water Quality

TestAmerica Job ID: 490-137433-1

Client Sample ID: Effluent 500 T0

Date Collected: 09/26/17 00:01 Date Received: 09/26/17 13:00 Lab Sample ID: 490-137433-7

Matrix: Water

Method: 200.8 - Metals (ICP/MS)

 Analyte
 Result Qualifier
 RL
 MDL Unit
 D
 Prepared Prepared
 Analyzed Dil Fac

 Copper
 0.544
 0.00200
 mg/L
 09/27/17 09:07
 09/27/17 18:07
 1

Client: Ramboll Environ US Corporation

Project/Site: Danville

TestAmerica Job ID: 490-137631-1

Project/Site: Danville									
Client Sample ID: V.Hard T48 Date Collected: 09/28/17 13:30 Date Received: 09/28/17 14:48						La	b Sample	ID: 490-137 Matrix	
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	0.00456	a daminor	0.00200		mg/L		09/29/17 09:40	10/02/17 15:41	1
Client Sample ID: Effluent Bas Date Collected: 09/28/17 13:30 Date Received: 09/28/17 14:48	seline	T48				La	b Sample	ID: 490-137 Matrix	
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.103		0.00200		mg/L		09/29/17 09:40	10/02/17 15:44	1
Client Sample ID: Effluent 84 T Date Collected: 09/28/17 13:30 Date Received: 09/28/17 14:48	Г48					La	b Sample	ID: 490-137 Matrix	'631-3 : Water
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.177	qualifici	0.00200	MOL	mg/L		09/29/17 09:40		1
Client Sample ID: Effluent 120 Date Collected: 09/28/17 13:30 Date Received: 09/28/17 14:48	.1 T48	3				La	b Sample	ID: 490-137 Matrix	
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.215		0.00200		mg/L		09/29/17 09:40	10/02/17 15:50	1
Client Sample ID: Effluent 171 Date Collected: 09/28/17 13:30 Date Received: 09/28/17 14:48	.5 T48	3				La	b Sample	ID: 490-137 Matrix	
Method: 200.8 - Metals (ICP/MS) Analyte	Rosult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.261	quantier	0.00200	MUL	mg/L			10/02/17 15:53	-
Client Sample ID: Effluent 245 Date Collected: 09/28/17 13:30 Date Received: 09/28/17 14:48	T48					La	b Sample	ID: 490-137 Matrix	7631-6 : Water
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.330		0.00200		mg/L		-	10/02/17 15:56	
Client Sample ID: Effluent 350 Date Collected: 09/28/17 13:30 Date Received: 09/28/17 14:48	T48					La	b Sample	ID: 490-137 Matrix	7631-7 : Wate
Method: 200.8 - Metals (ICP/MS)	Result	Qualifier	RL	MOI	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	1 100 dir		1 1	INITIAL	Ollic		riepaieu	Allalyzou	

Client: Ramboll Environ US Corporation

Project/Site: Danville

TestAmerica Job ID: 490-137631-1

Client Sample ID: Effluent 500 T48 Lab Sample ID: 490-137631-8

Date Collected: 09/28/17 13:30 Date Received: 09/28/17 14:48

Matrix: Water

Method: 200.8 - Metals (ICP/MS)

Dil Fac Analyte Result Qualifier RL MDL Unit Prepared Analyzed Copper 0.552 0.00200 mg/L 09/29/17 09:40 10/04/17 17:57

Client: Ramboll Environ US Corporation

Project/Site: Danville

TestAmerica Job ID: 490-140080-1

Lab Sample ID: 490-140080-1 Client Sample ID: Outfall 001 sd 9/26/17 (unfiltered)

Date Collected: 11/03/17 00:01 Matrix: Water

Date Received: 11/03/17 09:50

General Chemistry - Dissolved

Analyte RL Result Qualifier MDL Unit Prepared Analyzed Dil Fac 11/08/17 01:52 1.00 **Dissolved Organic Carbon** 13.1 mg/L

Site Water Event 2 Documents

48-HR ACUTE TOXICITY TEST DATA SHEET EPA-821-R-02-012 Method 2002.0

Page 1 of 2

SAMPLE DATE:	JOB NO: CLIENT: Town of Danvillo ORG EFFLUENT: OLGAGICO ORG SAMPLE "B" NOS.: CON PHO SAMPLE DATE: 10/3/1/7 STA ORGANISM SOURCE TEMP: 242 END FOOD BATCH: CON SAMPLE RAN		TEST TYPE: Static, E TEST ORGANISM: Cerioda ORGANISM AGE (date): 1013, 1013 ORGANISM SOURCE: 16 hrs li START DATE/TIME: 11311 RANDOMIZED BY: (48 hr, LC50 = 25	N VOLUME: S/VESSEL: ES: ER:	30 mL 15 - 20 mL 5 4 Type F No. 2091 LV Time: 08% Intls: LV		
Conc Vessel	Survival (#)		mg/L) 24 48	pH (s.u.)	Ter	nperature (°C)	Conductivity (umhos/cm		
Baseline A Effluent B C D 84 A B C D 120,1 A B C D 171,5 A B C D D	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 31. 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 8.C 2 8.D	7101 Y 24 7103 Run Run Run	\$168 846	\$4.7 24.7 250 25.3 250 25.3 25.4 25.4 25.6 25.3	1933 HIO 167 1954 1800 1849 2040 1937 3010		
Params: Initials: Time: Date:	M M LA 1150 1150 1150 1150 1150 1150 1150 115	Hardness (n Alkalinity (m TRC (mg/L)	ng/L)	Control Primary 304 270 0.03	100% Effluent	MH made: V1A 1st use: O(s) Light Level (fc): (०१५		

48-HR ACUTE TOXICITY TEST DATA SHEET EPA-821-R-02-012 Method 2002.0 Page 2 of 2 9060 LOG: TEST TYPE: Static, Daily Renewal TEST VESSEL CAPACITY: 30 mL JOB NO: TEST ORGANISM: TEST SOLUTION VOLUME: 15 - 20 mL Ceriodaphnia dubia NO. ORGANISMS/VESSEL: CLIENT: Town of Danville SAMPLE B#: 20914 5 TEST START DATE: NO. REPLICATES: EFFLUENT: .0/1//7 nal 4 Survival (#) 24 48 Temperature (°C) Conductivity (umhos/cm) 0 24 48 Conc Vessel DEAD (ppb) ID 3 <u>a</u> 203 2070 245 2770 200 ٧.٧ 30 12.8 04.8 8 **8**4 4 D 248 7.65 350 Ö 8-479 8.48 g.160 251 246 19010 BISU ₿ 216 2000 2175 720 500 A 0 84 24.7 0 7.8 7.62848858 25.D 248 8.4 \overline{C} D 83 144 Α 24.7 84 210 7.45797 25 2 245 B 84 C D Comments: OLA ie (13/17

Report Date:

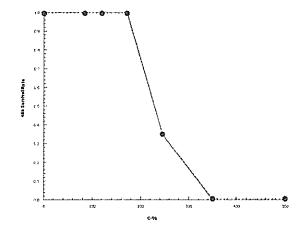
11 Dec-17 08:10 (p 1 of 2)

Test Code:

19060 cd nomina | 02-3210-9532

Ceriodaphni	ia 48-h Acute Sur	vival Test								Ramb	oll Envi
Analysis ID: Analyzed:	05-4084-6399 11 Dec-17 8:09		dpoint: alysis:	48h Survival F Untrimmed Sp		irber		IS Version: ial Results		.8.4	
Batch ID:	00-2044-9023	Te	st Type:	Survival (48h)			Anai	yst:			
Start Date:	01 Nov-17	Pro	otocol:	EPA/821/R-02	2-012 (2002))	Dilue	ent: Mod	I-Hard Synti	netic Wate	r
Ending Date	: 03 Nov-17	Sp	ecies:	Ceriodaphnia	dubia		Brine	e: Not	Applicable		
Duration:	48h	So	urce:	rce: In-House Culture							
Sample iD:	03-3931-1541	Co	de:	14397BB5			Çlier		n of Danvill	_	
Sample Date		Ma	terial:	POTW Effluer	nt		Proj	•	cial Studies		
	e: 01 Nov-17		urce:	WER				Non	ninal		
Sample Age:	: 24h	Sta	ition:	Town of Danv	ille					<u>,</u>	
Sample Note	: 2nd WER - Effi	uent NOM	NAL								
Spearman-K	ärber Estimates										
Threshold O		hreshold	Trim	Mu	Sigma		LC50		95% UCL		
Control Thres	shold 0		0.00%	2.366	0.01652		232.2	215.2	250.6		
	ability Criteria										
Attribute	Test Stat		its	Overlap	Decision		Outs -t-				
Control Resp	1	0.9 - NL		Yes		Acceptability					
	Rate Summary					ulated Varia					
	Control Type	Count	Mean		Max	Std Err	Std Dev	CV%	%Effect	Α	В
	Dilution Water	4	1	1	1	0	0	0.0%	0.0%	20	20 20
84 120.1		4 4	1 1	1 1	1 1	0	0	0.0% 0.0%	0.0% 0.0%	20 20	20
171.5		4	1	1	1	0	0	0.0%	0.0%	20	20
245		4	0.35	0.2	0.6	0.09574	0.1915	54.71%	65.0%	7	20
350		4	0	0	0	0	0	C /// / //	100.0%	0	20
500		4	0	0	0	0	0		100.0%	0	20
48h Survival	Rate Detail							•			
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
0	Dilution Water	1	1	1	1						
84		1	1	1	1						
120.1		1	1	1	4						
171.5		1	1	1	1						
245		0.6	0.4	0.2	0.2						
350		0	0	0	0						
500		0	0	0 .	0						
	Rate Binomials	_									
C-%	Control Type	Rep 1	Rep 2		Rep 4						
)	Dilution Water	5/5 = /=	5/5 =:=	5/5 5/5	5/5						
34 120 1		5/5 5/5	5/5 5/5	5/5 5/5	5/5 5/5						
120.1		5/5 5/5	5/5 5/5	5/5 5/5	5/5 5/5						
171 K				5/5 1/5	1/5						
171.5 245											
171.5 245 350		3/5 0/5	2/5 0/5	0/5	0/5						

Report Date:


11 Dec-17 08:10 (p 2 of 2)

Test Code:

19060 cd nomina | 02-3210-9532

Ceriodaphnia	Ramboll Environ				
Analysis ID:	05-4084-6399	Endpoint:	48h Survival Rate	CETIS Version:	CETISv1.8.4
Analyzed:	11 Dec-17 8:05	Analysis:	Untrimmed Spearman-Kärber	Official Results:	Yes

Graphics

CETIS	Analytical	Report
--------------	-------------------	--------

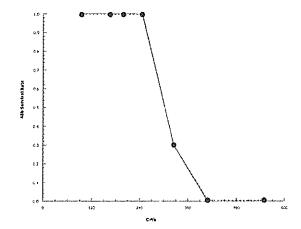
Report Date:

11 Dec-17 08:14 (p 1 of 2)

Test Code: 19060 Measured | 18-8013-7474

							Test	Code:	19060 M6	easured 18	-8013-747
Ceriodaphi	nia 48-h Acute Sur	vival Test								Rambo	li Environ
Analysis ID Analyzed:	05-0073-4733 11 Dec-17 8:13		dpoint: alysis:	48h Survival R		ärber		S Version:	CETISv1	.8.4	
				· · · · · · · · · · · · · · · · · · ·							
Batch ID: Start Date:	01-5067-8853 01 Nov-17		st rype: stocol:	Survival (48h) EPA/821/R-02-	012 (2001	D\	Anal Dilue	_	/ Hard Synth	natic Mater	
	te: 03 Nov-17			Ceriodaphnia d		<u>-)</u>	Brin	•	Applicable	icuc vvalei	
Duration:	48h	•	Species: Ceriodaphnia d Source: In-House Cultur				Age:		Uphilicanic		
Sample ID:			de:	14397BB5	•		Clier		n of Danvilk	€	
•	te: 31 Oct-17		terial:	POTW Effluent	I		Proje	ect: Spe	cial Studies		
Sample Ag	ite: 01 Nov-17		urce: tion:	WER Town of Danvil	lo		Μ	easured			
				TOWN OF DATIVI	16		/ / ()	easure			
-	te: 2nd WER - Effi	uent MEAS	UKED								······································
•	Kärber Estimates	t L (#			0			050/101	000/ 1101		
Threshold Control Thre		hreshold	Trim	Mu 6 2.485	Sigma 0.01131		LC50 305.2		95% UCL 321.5		
			0.00%	2.400	0.01131		305.2	289.7	321.5		
-	tability Criteria		_								
Attribute		TAC Lim	its	Overlap	Decisio		0.3				
Control Res		0.9 - NL		Yes		Acceptability			•		
	al Rate Summary					culated Varia	• •				_
C-%	Control Type	Count	Mean		Max	Std Err	Std Dev	CV%	%Effect	Α	B
93.9 165	Dilution Water	4	1	1	1	0	0	0.0%	0.0%	20 20	20 20
198.5		4 4	1 1	1 1	1 1	0 0	0	0.0% 0.0%	0.0% 0.0%	20	20
246		3	1	1	1	0	0	0.0%	0.0%	15	15
325		4	0.3	Ď	0.6	0.1291	0.2582	86.07%	70.0%	6	20
409		4	0	0	0	0	0		100.0%	0	20
549		4	0	0	Ō	Ō	Ō		100.0%	0	20
48h Surviva	al Rate Detail										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
93.9	Dilution Water	1	1	1	1						
165		1	1	1	1						
198.5		1	1	1	1						
246		1	1	1							
325		0.6	0.4	0.2	0						
109		0	0	0	0						
549		0	0	0	0						
18h Surviva	al Rate Binomials										
C-%	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
93.9	Dilution Water	5/5	5/5	5/5	5/5						
		5/5	5/5	5/5	5/5						
				5/5	5/5						
198.5		5/5	5/5	3/3	w, w						
198.5		5/5 5/5	5/5 5/5	5/5 5/5	v , v						
198.5 246					0/5						
165 198.5 246 325 409		5/5	5/5	5/5							

Report Date:


11 Dec-17 08:14 (p 2 of 2)

Test Code:

19060 Measured | 18-8013-7474

Ceriodaphnia	48-h Acute Surviva	l Test			Ramboll Environ
Analysis ID:	05-0073-4733	Endpoint:	48h Survival Rate	CETIS Version:	CETISv1.8.4
Analyzed:	11 Dec-17 8:13	Analysis:	Untrimmed Spearman-Kärber	Official Results:	Yes

Graphics

Client: Ramboll Environ US Corporation

Project/Site: Danville

TestAmerica Job ID: 490-142758-1

Client Sample ID: T0 Outfall 001 Lab Sample ID: 490-142758-1

Date Collected: 12/12/17 11:00 Date Received: 12/12/17 12:45 Matrix: Water

 Method: 200.8 - Metals (ICP/MS)
 Result Qualifier
 RL
 MDL Unit D
 D
 Prepared P

General Chemistry
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac
Total Suspended Solids 3.25 1.02 mg/L 12/16/17 21:50 1

Client: Ramboll Environ ÚS Corporation Project/Site: Danville

TestAmerica Job ID: 490-139873-1

Client Sample ID: Outfall To (Date Collected: 11/01/17 10:00 Date Received: 11/01/17 13:30	sampl	le is unfil	tered for D	OC)		La	b Sample	ID: 490-139 Matrix	
General Chemistry - Dissolved						_			
Analyte Dissolved Organic Carbon	Result	Qualifier	1.00	MDL	Unit mg/L	D	Prepared	Analyzed 11/08/17 01:52	Dil Fac
Dissolved Organic Carbon	14.0		1.00		mg/L			11/00/11 01.02	'
Client Sample ID: Outfall 84.0 Date Collected: 11/01/17 10:00 Date Received: 11/01/17 13:30	T0					La	b Sample	ID: 490-139 Matrix	
Γ									
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.158		0.00200		mg/L			11/03/17 15:26	1
Client Sample ID: Outfall 120. Date Collected: 11/01/17 10:00	1 T0					La	b Sample	ID: 490-139 Matrix	
Date Received: 11/01/17 13:30									
Method: 200.8 - Metals (ICP/MS)		0 ""		MDI	11.26				D:: 5
Analyte	0.193	Qualifier	0.00200	MDL	Unit mg/L	D	Prepared 11/02/17 09:50	Analyzed 11/03/17 15:29	Dil Fac
Copper	0.193		0.00200		mg/L		11/02/17 05.50	11/03/17 13.29	
Client Sample ID: Outfall 171. Date Collected: 11/01/17 00:01 Date Received: 11/01/17 13:30	5 T0					La	b Sample	ID: 490-139 Matrix	
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.238		0.00200		mg/L		11/02/17 09:50	11/03/17 15:32	1
Client Sample ID: Outfall 245 Date Collected: 11/01/17 00:01 Date Received: 11/01/17 13:30	ТО					La	b Sample	ID: 490-139 Matrix	9873-5 : Water
Method: 200.8 - Metals (ICP/MS)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.301		0.00200		mg/L		11/02/17 09:50	11/03/17 15:35	
Client Sample ID: Outfall 350 Date Collected: 11/01/17 00:01 Date Received: 11/01/17 13:30	ТО					La	b Sample	ID: 490-139 Matrix	9873-6 : Water
Method: 200.8 - Metals (ICP/MS)	Desuit	0	DI.	MDI	11	Б	Drawarad	Analysed	Dil For
Analyte Copper	0.393	Qualifier	0.00200	MDL	Unit mg/L	D	Prepared 11/02/17 09:50	Analyzed 11/03/17 15:47	Dil Fac
Client Sample ID: Outfall 500 Date Collected: 11/01/17 00:01 Date Received: 11/01/17 13:30	ТО					La	b Sample	ID: 490-139 Matrix	9873-7 : Wate
Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			0.000	1500					11 CONTROL 12 CO

Client: Ramboll Environ US Corporation

Project/Site: Danville Lab Sample ID: 490-140081-1 Client Sample ID: Outfall T48 Date Collected: 11/03/17 00:01 Matrix: Water Date Received: 11/03/17 09:50 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RI MDL Unit Prepared Analyzed Dil Fac 0.00200 11/08/17 09:44 11/09/17 12:01 Copper 0.0939 mg/L Lab Sample ID: 490-140081-2 Client Sample ID: Outfall 84.0 T48 Date Collected: 11/03/17 00:01 Matrix: Water Date Received: 11/03/17 09:50 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RI MDL Unit Prepared Analyzed Dil Fac 0.172 0.00200 mg/L 11/08/17 09:44 11/09/17 12:04 Copper Client Sample ID: Outfall 120.1 T48 Lab Sample ID: 490-140081-3 Date Collected: 11/03/17 00:01 Matrix: Water Date Received: 11/03/17 09:50 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDI Unit D Analyzed Dil Fac Prepared Copper 0.00200 11/08/17 09:44 11/09/17 12:07 0.204 mg/L Client Sample ID: Outfall 171.5 T48 Lab Sample ID: 490-140081-4 Date Collected: 11/03/17 00:01 Matrix: Water Date Received: 11/03/17 09:50 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Copper 0.254 0.00200 mg/L 11/08/17 09:44 11/09/17 12:10 Client Sample ID: Outfall 245 T48 Lab Sample ID: 490-140081-5 Date Collected: 11/03/17 00:01 Matrix: Water Date Received: 11/03/17 09:50 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.00200 11/08/17 09:44 11/09/17 12:13 Copper 0.349 ma/L Client Sample ID: Outfall 350 T48 Lab Sample ID: 490-140081-6 Matrix: Water Date Collected: 11/03/17 00:01 Date Received: 11/03/17 09:50 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.00200 11/08/17 09:44 11/09/17 12:16 Copper 0.425 mg/L Client Sample ID: Outfall 500 T48 Lab Sample ID: 490-140081-7 Date Collected: 11/03/17 00:01 Matrix: Water Date Received: 11/03/17 09:50 Method: 200.8 - Metals (ICP/MS) Result Qualifier MDL Unit Analyte RL D Prepared Analyzed Dil Fac Copper 0.544 0.00200 mg/L 11/08/17 09:44 11/09/17 12:19

TestAmerica Job ID: 490-140081-1

Lab Water Event 1 Documents

48-HR ACUTE TOXICITY TEST DATA SHEET EPA-821-R-02-012 Method 2002.0

Page 1 of 2

		PA-821-R-02	-012 Meth	od 2002.0				·/···		
LOG: JOB NO: CLIENT: EFFLUENT: SAMPLE "B" NO: SAMPLE DATE: ORGANISM SOUI	RCE TEMP:	anville	ORGANI ORGANI PHOTOF START E END DA	RGANISM: SM AGE (date SM SOURCE:	Cerioda): 15/31- 1151 16 hrs 1	Daily Renewal IMMO ASS-2 74-50 Ighus hrs dark 17 1142 17 1034	TEST S NO. OF NO. RE DILUTE FED @ 1	COLUTION CGANISMS PLICATE ON WATE LUTIONS I	S:	
Conc Vessel (ppb) ID		Survival (#) 24 48	DEAD	DO (r 0 2		pH (s.)	J.) 48		perature (°C) 24 48	Conductivity (umhos/cm 0 24 48
Very A Hard B C D 5 A B C D 7.2 A B C D 10.3 A B C D D	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 8 3 5	000000000000000000000000000000000000000	8 to 82	4 3 3	\$ (1) \$ (2) \$ (2) 8 (3)	8.77 (830 (831 (832)	24.0 24.1	25.0 85.3 25.1 24.9 25.4 25.3	583 1650 not 116 118 1
Params: Initials:	UN U			Hardness (rr	ali.)	Control Primary	100%	Effluent	Comments:	ומוח
Time: Date:	1143 111	3 651		Alkalinity (mg/L) Ammonia (mg/L))/L)	361 2002		<u></u>		17/17

L:\Ecolox Lab\LABFORMS\Client Test Shee's\Danville WERY&HACUTEcd

Page 2 of 2

	48.HR ACUTE	TOXICITY TEST DATA SHI	ET	,	Page 2 of 2
LOG: JOB NO: CLIENT: EFFLUENT:	Town of Danville	TEST TYPE: TEST ORGANISM: SAMPLE B #: TEST START DATE:	Static, Daily Renewal Ceriodaphnia dubia — 1: // // 7	TEST VESSEL CAPACITY: TEST SOLUTION VOLUME: NO. ORGANISMS/VESSEL: NO. REPLICATES:	30 mL 15 - 20 mL 5
Conc Vessel (ppb) ID	Survival (#) 0 24 48	DC (mg	/L) pH (s.u. 48 0 24	Temperature (°C) 48 0 24 48	Conductivity (umhos/cm) 0 24 48
14.7 A B C D 21 A B C D 30 A B C D	5 5 5 5 3 5 3 5 4 3 5 4 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0	S:6 S.U S.U	\$ nb	344 35.0 25.1 344 36.0 34.3 34.3 35.0 25.0 35.0 25.4	(33) (4) 114 (52) (52) (52) (52)

Report Date:

Test Code:

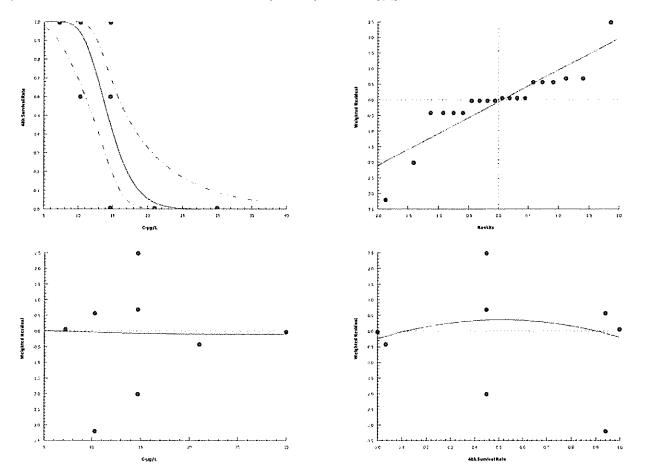
08 Dec-17 15:53 (p 1 of 2) 19060-L nominal | 09-5517-5535

								1001	oous.	10000 -	TOTTIME	
Ceriodaph	nia 48-h	Acute Surv	vival Test	****							Ram	boll Enviro
Analysis II	D: 05-6	888-4114	En	ipoint:	48h Survival R	ate		CET	S Version:	CETISv1	.8.4	
Analyzed:	08 E	ec-17 15:5	2 An	alysis:	Linear Regress	sion (MLE)		Offic	ial Results:	Yes		
Batch ID:	01-5	067-8853	Tes	t Type:	Survival (48h)			Anal	yst:			
Start Date:	: 01 N	lov-17	Pro	tocol:	EPA/821/R-02-	012 (2002)		Dilue	ent: Very	Hard Synt	hetic Wate	er
Ending Da	te: 03 N	lov-17	Spe	ecies:	Ceriodaphnia d	lubia		Brin	e: Not /	Applicable		
Duration:	48h		So	ırce:	In-House Cultu	re		Age:				
Sample ID		175-5370	Co	de:	6E5F8B6A			Clier		n of Danvill		
Sample Da				terial:	Copper suifate			Proje	ect: Spec	cial Studies		
Receive Da		ov-17		ırce:	WER	•_						
Sample Ag				tion:	Town of Danvil	ie						
Sample No			Hard Wate	r - NOM	INAL							
Linear Reg		Options										
Model Fun Log-Norma		LDtlog/V\I			hold Option hreshold	Threshold 0	Optimized No	Pooled No	Het Corr No	Weighted Yes	1	
	-			Ze/0 1	nresnoid	U	NO	IND	NO	res		
Regressio		•										
Iters LI		AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision	•	I
10 -2	1.64	47.84	49.63	1.155	0.09164	0.7705	1.627	2.928	0.2107	Non-Signi	nicant Lac	KOTFIL
Point Estin	nates											
	g/L	95% LCL	95% UCL									
LC50 14	1.3	12.98	15.76									
Test Accep	tability C	riteria										
Attribute		Test Stat	TAC Lim	ts	Overlap	Decision						
Control Res	ip	1	0.9 - NL		Yes	Passes Ad	ceptability C	riteria				
Regression	n Parame	ters										
Parameter		Estimate	Std Error	95% L	.CL 95% UCL	t Stat	P-Value	Decision(a:5%)			
Slope		10.91	2.131	6.736	15.09	5.122	<0.0001	Significan	t Parameter			
Intercept		-12.61	2.471	-17.45	-7.765	-5.103	<0.0001	Significan	t Parameter			
ANOVA Tal	ble											
Source		Sum Squa	res Me	an Squa	re DF	F Stat	P-Value	Decision(a:5%)			
Viodel		82.16195	82.	16195	1	78.23	<0.0001	Significan	l			
ack of Fit		6.136899		34225	4	1.627	0.2107	Non-Signi	ficant			
Pure Error		16,9697		12761	18							
Residual		23.1066	1.0	003	22							
Residual A	nalysis											
Attribute		Method			Test Stat		P-Value	Decision(
Goodness-c		Pearson Cl			23.11	33.92	0.3957	_	ficant Hetero			
/ariances		Likelihood l Mod Leven			23.08 nce 1.286	33.92 2.773	0.3972 0.3128	Non-Signi Equal Var	ficant Hetero	genity		
Distribution		Shapiro-Wi			0.7803	0.9169	0.0001	•	ances al Distributio	n		
		Anderson-E		-		2.492	<0.0001		al Distributio			
8h Surviv							ated Variate	e(A/B)				
C-µg/L	Contro	-	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
5			4	1	1	1	0	0	0.0%	0.0%	20	20
7.2			4	1	1	1	0	0	0.0%	0.0%	20	20
0.3			4	0.9	0.6	1	0.1	0.2	22.22%	10.0%	18	20
14.7			4	0.55	0	1	0.2062	0.4123	74.97%	45.0%	11	20
21			4	0	0	0	0	0		100.0%	0	20
30			4	0	0	0	0	0		100.0%	0	20

Report Date:

08 Dec-17 15:53 (p 2 of 2)

Test Code:


19060-L nominal | 09-5517-5535

Ceriodaphr	nia 48-h Acute Su	rvival Te	st					Ramboll Environ
Analysis ID Analyzed:	: 05-6888-4114 08 Dec-17 15:	_	•	Sh Survival F near Regres	Rate ssion (MLE)	CETIS Version: Official Results:	CETISv1.8.4 Yes	
48h Surviva	al Rate Detail							
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			
5		1	1	1	1	·		
7.2		1	1	1	1			
10.3		0.6	1	1	1			
14.7		1	0.6	0.6	0			
21		0	0	0	0			
30		0	0	0	0			
48h Surviva	al Rate Binomials							
C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4			

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4
5		5/5	5/5	5/5	5/5
7,2		5/5	5/5	5/5	5/5
10.3		3/5	5/5	5/5	5/5
14.7		5/5	3/5	3/5	0/5
21		0/5	0/5	0/5	0/5
30		0/5	0/5	0/5	0/5

Graphics

Log-Normal [NED=A+B*log(X)]

Report Date:

08 Dec-17 14:38 (p 1 of 2)

Test Code:

19060-L Measere | 15-0798-1689

Ceriod	aphnia 4	8-h Acute Sur	vival Te	st							Ran	aboll Envir
Analysi		06-7369-8431		Endpoint:	48h Survival R			CET	iS Version:	CETISv	1.8.4	
Analyz	ed:	08 Dec-17 14:3	8	Analysis:	Linear Regress	sion (MLE)		Offic	ial Results	; Yes		
Batch I	D:	00-2044-9023	7	Test Type:	Survival (48h)			Anal	yst:			
Start D	ate:	01 Nov-17	F	Protocol:	EPA/821/R-02	-012 (2002)		Dilu	ent: Mod	I-Hard Synt	hetic Wat	ter
Ending		03 Nov-17	\$	Species:	Ceriodaphnia o			Brin	e: Not	Applicable		
Duratio	n:	48h		Source:	In-House Cultu	ıre		Age:				
Sample		18-5175-5370		Code:	6E5F8B6A			Clier		n of Danvill		
		01 Nov-17		Material:	Copper sulfate			Proj	ect: Spe	cial Studies	i	
		01 Nov-17	_	Source:	WER							
Sample	Age:	NA		Station:	Town of Danvil	ie						
Sample	Note:	2nd WER Very	Hard W	ater - MEAS	SURED TO and	T48 averag	ed					
_inear	Regress	ion Options										
Vlodel I	Function	1		Thres	hold Option	Threshold	l Optimize	d Pooled	Het Corr	Weighted	<u> </u>	
₋og-Noi	rmal [NE	D=A+B*log(X)]		Zero T	hreshold	0	No	No	No	Yes		
Regres	sion Su	mmary										
Iters	LL	AICc	BIC	Mu	Sigma	Adj R2	F Stat	Critical	P-Value	Decision	(a:5%)	
10	-21.55	47.68	49.46	1.106	0.09176	0.7722	1.582	2.928	0.2220	Non-Sign	ificant La	ck of Fit
oint E	stimates	š										
_evel	μg/L	95% LCL	95% U	CL								
C50	12.78	11,61	14.1									
Regress	sion Par	ameters										
Parame		Estimate	Std En	ror 95% L	CL 95% UCL	t Stat	P-Value	Decision(ˈaː5%\			
Slope		10.9	2.124	6.735	15.06	5.132	<0.0001		t Parameter			
ntercep	ot	-12.06	2.352	-16.67	-7.448	-5.127	< 0.0001	-	t Parameter			
ANOVA	Table				10.1							
Source		Sum Squa	ıras M	ilean Squai	re DF	F Stat	P-Value	Decision(a:5%)			
/lodel		82.3323		2.3323	1	78.97	<0.0001	Significan				
ack of	Fit	5.96655		.491638	4	1.582	0.2220	Non-Signi				
ure En		16.9697		.942761	18							
Residua	ıl	22.93625	1	.042557	22							
Residua	al Analys	sis										
\ttribut	-	Method			Test Stat	Critical	P-Value	Decision(α:5%)			
	ss-of-Fit	Pearson C	hi-Sq G	OF	22,94	33.92	0.4053		ficant Heter	ogenity		
		Likelihood			22,92	33.92	0.4065	-	ficant Heter	•		
/ariance	98	Mod Leven	e Equal	ity of Variar	ice 1.287	2.773	0.3128	Equal Var		• ,		
Distribut	lion	Shapiro-W		-	0.7748	0.9169	0.0001		al Distributio	on		
		Anderson-l	Darling A	\2 Normalit	y 2.634	2.492	<0.0001	Non-norm	al Distributio	on		
	vival Ra	te Summary				Calcu	ılated Varia	te(A/B)				
8h Sur		ntrol Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	A	В
	Co			1	1	1	0	0	0.0%	0.0%	20	20
-μg/L	Co		4					0	0.0%	0.0%	20	
-μg/L .4	Co		4	1	1	1	0	V				20
-μg/L i.4 i.7	Co			1 0.9	1 0.6	1	0.1	0.2	22.22%	10.0%	18	20 20
C-μg/L 1.4 5.7 1.2	Co									10.0%		
18h Sur C-µg/L 1.4 5.7 9.2 3.1 8.9	Co			0.9	0.6	1	0.1	0.2	22.22%		18	20

Ceriodaphnia 48-h Acute Survival Test

Report Date:

08 Dec-17 14:38 (p 2 of 2)

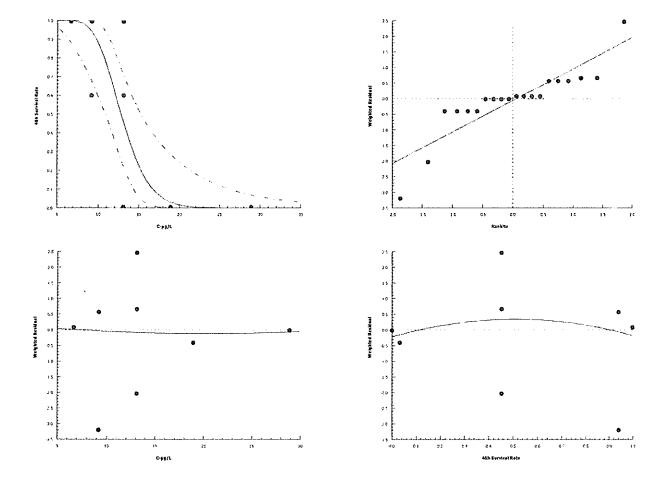
Test Code:

Code: 19060-L Measere | 15-0798-1689

Ramboll Environ

Application of Dec 47 A4400 Application Linear December (MLD)	
Analyzed: 08 Dec-17 14:38 Analysis: Linear Regression (MLE) Official Results: Yes	

48h Survival Rate Detail


C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
4.4		1	1	1	1	
6.7		1	1	1	1	
9.2		0.6	1	1	1	
13.1		1	0.6	0.6	0	
18.9		0	0	0	0	
28.9		0	0	0	0	

48h Survival Rate Binomials

C-µg/L	Control Type	Rep 1	Rep 2	Rep 3	Rep 4	
4.4		5/5	5/5	5/5	5/5	
6.7		5/5	5/5	5/5	5/5	
9.2		3/5	5/5	5/5	5/5	
13.1		5/5	3/5	3/5	0/5	
18.9		0/5	0/5	0/5	0/5	
28.9		0/5	0/5	0/5	0/5	

Graphics

Log-Normal [NED=A+B*log(X)]

Client: Ramboll Environ US Corporation

Project/Site: Danville

TestAmerica Job ID: 490-140454-1

Client Sample ID: V. Hard Date Collected: 11/08/17 11:00 Date Received: 11/08/17 12:53						Lat	Sample	ID: 490-140 Matrix	1454-1 : Water
Method: 200.8 - Metals (ICP/MS)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	ND		0.00200		mg/L	1	1/09/17 09:19	11/09/17 18:14	1
Client Sample ID: V. Hard 7.2 Date Collected: 11/08/17 11:00 Date Received: 11/08/17 12:53	ТО					Lat	Sample	ID: 490-140 Matrix	
Method: 200.8 - Metals (ICP/MS)	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.00685		0.00200		mg/L			11/09/17 18:17	1
Client Sample ID: V. Hard 14. Date Collected: 11/08/17 11:00 Date Received: 11/08/17 12:53	7 T0					Lat	Sample	ID: 490-140 Matrix	
Method: 200.8 - Metals (ICP/MS)									
Analyte	Transcon access	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.0142		0.00200		mg/L	1	1/09/17 09:19	11/09/17 18:20	1
Date Collected: 11/08/17 11:00 Date Received: 11/08/17 12:53 Method: 200.8 - Metals (ICP/MS) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Matrix Analyzed	Dil Fac
Copper	0.00459		0.00200		mg/L	1	1/09/17 09:19	11/09/17 18:23	1
Client Sample ID: V. Hard 21 Date Collected: 11/08/17 11:00 Date Received: 11/08/17 12:53	ТО					Lab	Sample	ID: 490-140 Matrix	
Method: 200.8 - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Copper	0.0206		0.00200		mg/L	1	1/09/17 09:19	11/09/17 18:26	1
Client Sample ID: V. Hard 30	ТО					Lab	Sample	ID: 490-140 Matrix	
Date Collected: 11/08/17 11:00 Date Received: 11/08/17 12:53									
Date Received: 11/08/17 12:53 Method: 200.8 - Metals (ICP/MS)	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Date Received: 11/08/17 12:53	Result	Qualifier	RL 0.00200	MDL	Unit mg/L	D1	Prepared 1/09/17 09:19	Analyzed 11/09/17 18:29	Dil Fac
Method: 200.8 - Metals (ICP/MS) Analyte Copper	0.0306	Qualifier		MDL			1/09/17 09:19	11/09/17 18:29	1
Date Received: 11/08/17 12:53 Method: 200.8 - Metals (ICP/MS) Analyte	0.0306	Qualifier		MDL			1/09/17 09:19		1 454-7
Date Received: 11/08/17 12:53 Method: 200.8 - Metals (ICP/MS) Analyte Copper Client Sample ID: V. Hard 10.3 Date Collected: 11/08/17 11:00	0.0306 3 TO	Qualifier		MDL	mg/L		1/09/17 09:19	11/09/17 18:29 ID: 490-140	1 454-7

Client: Ramboll Environ US Corporation

Project/Site: Danville

TestAmerica Job ID: 490-140757-1

Client Sample ID: V Hard 48 Lab Sample ID: 490-140757-1 Date Collected: 11/10/17 00:01 Matrix: Water Date Received: 11/13/17 13:30 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Copper 0.00258 0.00200 mg/L 11/14/17 09:29 11/15/17 18:34 Client Sample ID: V Hard 5 T48 Lab Sample ID: 490-140757-2 Date Collected: 11/10/17 00:01 Matrix: Water Date Received: 11/13/17 13:30 Method: 200.8 - Metals (ICP/MS) Result Qualifier Analyte RL MDL Unit Analyzed Dil Fac Copper 0.00417 0.00200 mg/L 11/14/17 09:29 11/15/17 18:37 Client Sample ID: V Hard 7.2 T48 Lab Sample ID: 490-140757-3 Date Collected: 11/10/17 00:01 Matrix: Water Date Received: 11/13/17 13:30 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RI MDL Unit D Prepared Analyzed Dil Fac 0.00200 11/14/17 09:29 11/15/17 18:40 Copper 0.00656 mg/L Client Sample ID: V Hard 10.3 T48 Lab Sample ID: 490-140757-4 Date Collected: 11/10/17 00:01 Matrix: Water Date Received: 11/13/17 13:30 Method: 200.8 - Metals (ICP/MS) RL Analyte Result Qualifier MDL Unit D Prepared Analyzed Dil Fac 0.00200 11/14/17 09:29 11/15/17 18:43 Copper 0.00851 mg/L Client Sample ID: V Hard14.7 T48 Lab Sample ID: 490-140757-5 Date Collected: 11/10/17 00:01 Matrix: Water Date Received: 11/13/17 13:30 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier Prepared RL MDL Unit Analyzed Dil Fac Copper 0.0120 0.00200 mg/L 11/14/17 09:29 11/15/17 18:46 Lab Sample ID: 490-140757-6 Client Sample ID: V Hard 21 T48 Date Collected: 11/10/17 00:01 Matrix: Water Date Received: 11/13/17 13:30 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.0171 0.00200 mg/L 11/14/17 09:29 11/15/17 18:49 Copper Client Sample ID: V Hard 30 T48 Lab Sample ID: 490-140757-7 Date Collected: 11/10/17 00:01 Matrix: Water Date Received: 11/13/17 13:30 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Copper 0.0270 0.00200 mg/L 11/14/17 09:29 11/15/17 18:52

Lab Water Event 2 Documents

48-HR ACUTE TOXICITY TEST DATA SHEET EPA-821-R-02-012 Method 2002.0

LOG:		EPA-021-K-0/	2-012 Method 2002.		Web			7
Conc Vessel Survival (#) OO (mg/L) DEAD O 24 48 DEAD O 24 A8 O 24 O 0 O	JOB NO:		TEST ORGANISM	: Cerioda	phnia dubia	TEST SOLUTION VOLUME:		15 - 20 mL
SAMPLE "B" NOS.	EFFLUENT:	Very Hard	ORGANISM SOU			NO. REPLICATE	s:	4
SAMPLE DATE: Color START DATE/TIME: ADSIGN LUQ DILUTIONS MADE BY: Time: 1		4	-1		DILUTION WAT	ER:	Type YELNO : DIKAT	
CORGANISM SOURCE TEMP: 3\(\frac{1}{1}\) END DATE/TIME: A B DEAD B TEMPERATOR TO TEST: Time:	H .		1					
FOOD BATCH:	9		1	- 6-220				
Conc Vessel Survival (#) DO (mg/L) pH (s.u.) Temperature (*C) Conductivity (umhos/cm (*C) (pph) ID O 24 48 DEAD O 24 48 O 24 48 O 24 O 24 48 O	2	***	1					
Composition Control Primary 100% Effluent Comments: Initials: Light Ligh	FOOD BATCH:	100,0010	RACKDOMIZED BY	- <u>- KN</u>		16 III. 2000 - 10	D MELLUTE	// //// //////////////////////////////
Composition Control Primary 100% Effluent Comments: Initials: Light Ligh	Conc Vessel	Suprival (#)		DO (mail)	nH (s.u.) Ter	mnerature (°C)	Conductivity (umbos/cm
Hard B			DEAD 0					
Hard B	Very A	555	ि रिप		Tar	Run		590
C S S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T S C D S T T T T T T T T T				73 7.4				
D S T S S S S S S S S					1,4,-1,		12 1 2 2 2	
5 A 5 5 5 5 6 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9			1 -	 	-			
B S T S S S S S S S S		E C 16	1. 7.0	1	202	ลบน		591
C S S S S S S S S S		R 12 16		121	90			
D S S R U S S S S S S S S S			+		14.0.0	11.19	D4 ()4-5-1	18863 1815
7.2 A				 				
B S S S S S S S S S				 	3 15	1		500
C S S U I				3 (72		71.0		
D			12 -	12-118.7	1 N N	5.10	1902 AUS	1000 000
10.3 A			12			<u> </u>		
B S Y 3 Z P P P P P P P P P	ם		1.7 1					
Params:	10.3 A	1.3		<u> </u>				
D 3/4 4	В		12	18.3 3.3	130	310	247 JUL	1243 [60]
Params: 比れ オル トル Control Primary 100% Effluent Comments: Initials: 比れ ドカ トル Hardness (mg/L)	l c	९ पि उ	12					
Params:	D	344						
Params: おっ オレ トレ		- W						
Params: おっ オレ トレ		سريا ا	(1013)					
Initials: は			·	· L	Combaci Dalar	100% 540	In	
Time: 以び 132 732 Alkalinity (mg/L) 45 1st use: 121 2212 Date: 2032 131 (2432) TRC (mg/L) / ひ・ジン Light Level (fc): '円. 1	1							0000
Date: (2/30 2/31 (2/32) TRC (mg/L) / 0.57 Light Level (fc): 97.1	li .		}					
	1							
		b-was branch it to see						

L:\Ecotox Lab\LABFORMS\Client Test Sheets\Danville WER\48HACUTEcd

48-HR ACUTE TOXICITY TEST DATA SHEET EPA-821-R-02-012 Method 2002.0

Page 2 of 2 19129 LOG: TEST TYPE: Static, Daily Renewal TEST VESSEL CAPACITY: 30 mL JOB NO: TEST ORGANISM: Ceriodaphnia dubia TEST SOLUTION VOLUME: 15 - 20 mL Alu CLIENT: Town of Danville SAMPLE B#; NO. ORGANISMS/VESSEL: 5 EFFLUENT: Very Hard TEST START DATE: 12/20/17 NO. REPLICATES: Conc Vessel Survival (#) 24 48 Temperature (°C) Conductivity (umhos/cm) 0 24 48 DEAD (ppb) 7 303 <u> 595</u> એા ૮ Lŧ 3 1003 8 110 3-10 245 3 U D 244 Ч 800 21 A 42 812 8.19 प्रथप्र प्रथप ð١ SUN LUD Ч 4 000 30 A <u> 7</u> 34r 574 ١ 001 594 34 82 80 30 Just bus 8 Comments:

Report Date: Test Code: 11 Jan-18 15:58 (p 1 of 2) 19129 | 00-4314-0637

Ceriodaph	nia 48-h Acute Sur	vival Tes	t								Rambo
Analysis II Analyzed:	13-6365-1635 11 Jan-18 15:5		ndpoint: nalysis:	48h Survival R Untrimmed Sp		CETIS Version: CETISv1.8.4 Official Results: Yes					
Batch ID:	18-4760-2997	760-2997 Test Type: Survival (4					Ana	ilyst:			
Start Date:	20 Dec-17	Protocol: EPA/821/R-02-			-012 (2002	2)	Difu	rent: Ver	y Hard Synt	hetic Water	
Ending Da	te: 22 Dec-17	S	oecies:	ecies: Ceríodaphnia dubia				ie: No	Applicable		
Duration:	48h	48h Source: In-House Culture					Age	:			
Sample ID:	09-5358-7798	C	ode:	38D69856			Clie	Client: Town of Danville			
Sample Da	te: 20 Dec-17	M	aterial:	Copper sulfate			Pro	Project: Special Studies			
	ite: 20 Dec-17	Sc	ource:	WER				ฑอด	inal		
Sample Ag	e: NA	St	ation:	Town of Danvil	le			110	(-0.		
Spearman-	Kärber Estimates										
Threshold		hreshold	Trim	Mu	Sigma		LC50	95% LCL	. 95% UCL		
Control Thre	eshold 0		0.00%	6 1.129	0.0281		13.45	11.81	15.3		
Test Accep	tability Criteria										
Attribute	Test Stat	TAC Lin	nits	Overlap	Decisio	п					
Control Res	p 1	0.9 - NL		Yes	Passes	Acceptability	Criteria				
48h Surviv	al Rate Summary				Calc	ulated Varia	ite(A/B)				
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	Α	В
)	Lab Water	4	1	1	1	0	0	0.0%	0.0%	20	20
5		4	1	1	1	0	0	0.0%	0.0%	20	20
7.2		4	0.95	0.8	1	0.05	0.1	10.53%	5.0%	19	20
10.3		4	0.7	0.6	8.0	0.05774	0.1155	16.5%	30.0%	14	20
14.7		4	0.4	0.2	0.6	0.08165	0.1633	40.82%	60.0%	8	20
21		4	0.2	0.2	0.2	0	0	0.0%	80.0%	4	20
30		4	0	0	0	0	0		100.0%	0	20
48h Surviv	al Rate Detail										
C-µg/L	Control Type	Rep 1	Rep 2		Rep 4						
)	Lab Water	1	1	1	1						
5		1	1	1	1						
7.2		1	1	0.8	1						
10.3		8.0	0.6	0.6	0.8						
14.7		0.6	0.4	0.4	0.2						
21		0.2	0.2	0.2	0.2						
30		0	0	0	0						
\$8h Surviva	al Rate Binomials										
C-μg/L	Control Type	Rep 1	Rep 2		Rep 4						
)	Lab Water	5/5	5/5	5/5	5/5						
i		5/5	5/5	5/5	5/5						
'.2		5/5	5/5	4/5	5/5						
10.3		4/5	3/5	3/5	4/5						
14.7		3/5	2/5	2/5	1/5						
?1		1/5	1/5	1/5	1/5						
30		0/5	0/5	0/5	0/5						

Report Date:

11 Jan-18 15:58 (p 2 of 2)

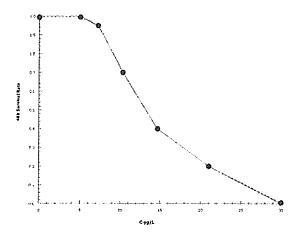
Test Code: 19129 | 00-4314-0637

Ceriodaphnia 48-h Acute Surviva	d Test	
---------------------------------	--------	--

Ramboll

Analysis ID: Analyzed:

13-6365-1635 11 Jan-18 15:57


Analysis:

Endpoint: 48h Survival Rate Untrimmed Spearman-Kärber

CETIS Version: Official Results: Yes

CETISv1.8.4

Graphics

Report Date:

11 Jan-18 16:10 (p 1 of 2)

Test Code:

19129-measured | 20-1464-5885

							Tes	t Code:	19129-	measured 2	U-1464-588
Ceriodaphni	ia 48-h Acute Sur	vival Test									Ramboll
Analysis ID: Analyzed:	• • • • • • • • • • • • • • • • • • • •				48h Survival Rate Untrimmed Spearman-Kärber			CETIS Version: Official Results:		v1.8.4	
Batch ID:	14-7331-6548	Te	st Type:	Survival (48h)			Ana	ılyst:			
Start Date:	21 Dec-17		otocol:	EPA/821/R-02	-012 (2002)		-	od-Hard Svi	nthetic Water	•
Ending Date	: 23 Dec-17		ecies:	Ceriodaphnia dubia			Bri		ot Applicable		
Duration:	48h	Sc	urce:		In-House Culture						
Sample ID:	09-5358-7798	Cc	ode:	38D69856			Clie	ent: To	own of Dany	ille	
Sample Date	e: 20 Dec-17	Ma	aterial:	Copper sulfate			Pro	Project: Special Studies			
Receive Date	e: 20 Dec-17	So	urce:	WER							
Sample Age:	: 24h	Sta	ation:	Town of Danvi	lle						
Sample Note	: measured										
Spearman-K	ärber Estimates										•
Threshold O		reshold	Trim	Mu	Sigma		LC50	95% LC		L	
Control Thres	hold 0		0.00%	1.023	0.02786		10.55	9.275	11.99		
Test Accepta	ability Criteria										
Attribute	Test Stat	TAC Lin	nits	Overlap	Decision	n					
Control Resp	1	0.9 - NL		Yes	Passes /	Acceptability	Criteria				
48h Survival	Rate Summary				Calc	ulated Varia	te(A/B)				
C-µg/L	Control Type	Count	Mean	Min	Max	Std Err	Std Dev	CV%	%Effect	. A	В
	Lab Water	4	1	1	1	0	0	0.0%	0.0%	20	20
3.5		4	1	1	1	0	0	0.0%	0.0%	20	20
5		4	0.95	0.8	1	0.05	0.1	10.53%	5.0%	19	20
9.7		4	0.7	0.6	8.0	0.05774	0.1155	16.5%	30.0%	14	20
10.8		4	0.4	0.2	0.6	0.08165	0.1633	40.82%	60.0%	8	20
15.1 24.6		4	0.2 0	0.2 0	0.2 0	0	0 0	0.0%	80.0% 100.0%	4 0	20 20
48h Survival	Rate Detail						<u> </u>		100.078		20
	Control Type	Rep 1	Rep 2	Rep 3	Rep 4						
	Lab Water	1	1	1	1						
3.5		1	1	1	1						
5		1	1	0.8	1						
9.7		8.0	0.6	0.6	0.8						
10.8		0.6	0.4	0.4	0.2						
15.1		0.2	0.2	0.2	0.2						
24.6		0	0	0	0						
	Rate Binomials										
C-μg/L	Control Type	Rep 1	Rep 2		Rep 4						
2	Lab Water	5/5	5/5	5/5	5/5						
3.5 -		5/5	5/5	5/5	5/5						
5		5/5	5/5	4/5	5/5						
9.7		4/5	3/5	3/5	4/5						
		7375	JIE.	2/5	1/5						
10.8		3/5	2/5								
10.8 15.1 24.6		1/5 0/5	2/5 1/5 0/5	1/5 0/5	1/5 0/5						

Report Date:

11 Jan-18 16:10 (p 2 of 2)

Test Code:

19129-measured | 20-1464-5885

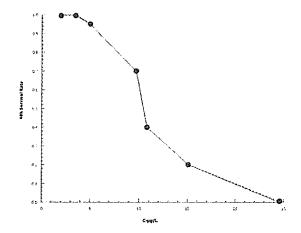
Ceriodaphnia 48-h Acute Survival Test

Ramboli

Analysis ID: Analyzed:

12-0002-7024 11 Jan-18 16:10

Endpoint: 48h Survival Rate


Untrimmed Spearman-Kärber

CETIS Version:

CETISV1.8.4

Analysis: Official Results: Yes

Graphics

Client: Ramboll Environ US Corporation

Project/Site: Danville

Copper

TestAmerica Job ID: 490-143469-1

Client Sample ID: V.Hard 5ppb T0 Lab Sample ID: 490-143469-1 Date Collected: 12/20/17 09:00 Matrix: Water Date Received: 12/20/17 14:35 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.00200 12/22/17 12:40 12/26/17 16:44 Copper 0.00317 mg/L Client Sample ID: V.Hard 7.2ppb T0 Lab Sample ID: 490-143469-2 Date Collected: 12/20/17 09:00 Matrix: Water Date Received: 12/20/17 14:35 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Copper 0.00200 12/22/17 12:40 12/26/17 16:47 0.00463 mg/L Client Sample ID: V.Hard 10.3ppb T0 Lab Sample ID: 490-143469-3 Date Collected: 12/20/17 09:00 Matrix: Water Date Received: 12/20/17 14:35 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Copper 0.0102 0.00200 mg/L 12/22/17 12:40 12/26/17 16:50 Client Sample ID: V.Hard 14.7ppb T0 Lab Sample ID: 490-143469-4 Date Collected: 12/20/17 09:00 Matrix: Water Date Received: 12/20/17 14:35 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Copper 0.00986 0.00200 mg/L 12/22/17 12:40 12/26/17 16:59 Client Sample ID: V.Hard 21ppb T0 Lab Sample ID: 490-143469-5 Date Collected: 12/20/17 09:00 Matrix: Water Date Received: 12/20/17 14:35 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared 0.00200 12/22/17 12:40 12/26/17 17:02 Copper 0.0145 mg/L Client Sample ID: V.Hard 30ppb T0 Lab Sample ID: 490-143469-6 Date Collected: 12/20/17 09:00 Matrix: Water Date Received: 12/20/17 14:35 Method: 200.8 - Metals (ICP/MS) Analyte

Analyzed

12/22/17 12:40 12/26/17 17:05

RI

0.00200

MDL Unit

mg/L

Prepared

Result Qualifier

0.0242

Dil Fac

Client: Ramboll Environ US Corporation

Project/Site: Danville

TestAmerica Job ID: 490-143823-1

Matrix: Water

Matrix: Water

Matrix: Water

Client Sample ID: V.Hard 5ppb T48 Lab Sample ID: 490-143823-1 Date Collected: 12/22/17 09:00 Matrix: Water Date Received: 12/27/17 14:00 Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Copper 0.00384 0.00200 12/28/17 13:10 12/29/17 11:14 mg/L

Client Sample ID: V.Hard 7.2ppb T48 Lab Sample ID: 490-143823-2 Date Collected: 12/22/17 09:00 Matrix: Water

Date Received: 12/27/17 14:00

Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared D Analyzed Dil Fac Copper 0.00544 0.00200 mg/L 12/28/17 13:10 12/29/17 11:17

Client Sample ID: V.Hard 10.3ppb T48 Lab Sample ID: 490-143823-3

Date Collected: 12/22/17 09:00 Date Received: 12/27/17 14:00

Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RI MDL Unit Prepared Analyzed Dil Fac 0.00200 Copper 0.00917 mg/L 12/28/17 13:10 12/29/17 11:20

Client Sample ID: V.Hard 14.7ppb T48 Lab Sample ID: 490-143823-4 Matrix: Water

Date Collected: 12/22/17 09:00 Date Received: 12/27/17 14:00

Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Copper 0.0117 0.00200 mg/L 12/28/17 13:10 12/29/17 11:29

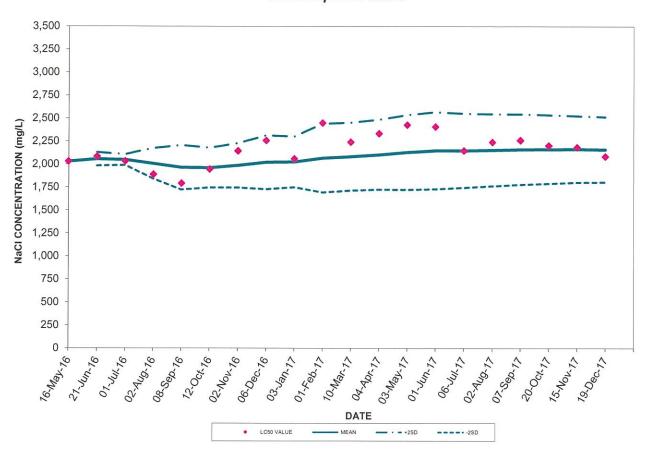
Client Sample ID: V.Hard 21ppb T48 Lab Sample ID: 490-143823-5

Date Collected: 12/22/17 09:00 Date Received: 12/27/17 14:00

Method: 200.8 - Metals (ICP/MS)

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Copper 0.00200 12/28/17 13:10 12/29/17 11:32 0.0157 mg/L

Client Sample ID: V.Hard 30ppb T48 Lab Sample ID: 490-143823-6 Date Collected: 12/22/17 09:00


Date Received: 12/27/17 14:00

Method: 200.8 - Metals (ICP/MS) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.00200 Copper 0.0250 mg/L 12/28/17 13:10 12/29/17 11:35

TestAmerica Nashville

Control Charts

RAMBOLL ENVIRON ACUTE REFERENCE TOXICANT (NaCl) 2016 - 2017 Ceriodaphnia dubia

L:\Ecotox Lab\9003\2017 Reftox\cdacute 5/4/2018

Ramboll Environ Ecotox Reference Toxicant Testing

Ceriodaphnia dubia ACUTE REFERENCE TOXICANT TESTING - SODIUM CHLORIDE (NaCI) 2016 - 2017

Test Number	Log Number	Test Initiation Date	Control Survival (%)	48-hr LC50 (mg/L)	95% Confidence Intervals (mg/L)	LC50 Cumulative Mean (mg/L)	LC50 Cumulative St. Dev. (mg/L)	2+ St. Dev, (mg/L)	2- St. Dov. (mg/L)	Coefficien of Variation {%}
1	18228	16-May-16	100	2,030	1,940 - 2,123	2,030				
2	18299	21-Jun-16	100	2,030	1,992 - 2,176	2,056	37	2.130	1,982	0
3	18326	01-Jul-16	100	2,032	1,952 - 2,176	2,030	29	2,130	1,982	1
4	18363	02-Aug-16	100	1,889	1,814 - 1,969	2,040	83	2,174	1,842	4
5	18428	08-Sep-16	95	1,792	1,622 - 1,923	1,965	121	2,206	1,724	5
6	18475	12-Oct-16	100	1,946	1,876 - 2,024	1,962	108	2,178	1,746	5
7	18510	02-Nov-16	100	2,145	2,057 - 2,236	1,988	121	2.229	1.747	6
8	18631	06-Dec-16	100	2,258	2,185 - 2,335	2,022	147	2,315	1,728	7
9	18671	03-Jan-17	100	2,059	1,958 - 2,164	2,026	138	2,302	1,750	6
10	18713	01-Feb-17	100	2,450	2,374 - 2,528	2,068	187	2,442	1,695	9
11	18770	10-Mar-17	100	2,242	2,153 - 2,334	2,084	185	2,454	1,714	8
12	18808	04-Apr-17	100	2,335	2,222 - 2,454	2,105	191	2,486	1,724	9
13	18853	03-May-17	100	2,429	2,320 - 2,543	2,130	203	2,537	1,723	9
14	18895	01-Jun-17	100	2,410	2,310 - 2,510	2,150	209	2,568	1,732	9
15	18936	06-Jul-17	100	2,148	2,050 - 2,251	2,150	202	2,553	1,747	9
16	18977	02-Aug-17	100	2,242	2,133 - 2,356	2,156	196	2,548	1,763	9
17	18919B	07-Sep-17	100	2,262	2,167 - 2,359	2,162	192	2,545	1,779	9
18	19043	20-Oct-17	100	2,204	2,126 - 2,284	2,164	186	2,537	1,792	8
19	19085	15-Nov-17	100	2,186	2,098 - 2,278	2,165	181	2,527	1,803	8
20	191126	19-Dec-17	90	2,087	2,021 - 2,156	2,161	177	2,515	1,807	8

Notes

Moderately Hard Water was used as the Control Water in each test

LC50 - Concentration of sodium chloride which was lethal to 50 percent of the test organisms.

NC - Not calculable; NA - Not Applicable

L'IEcotox Lebi9003/2017 Refloxicdacute 5/4/2018